Economic implications of a protein transition: Evidence from Walloon beef and dairy farms January 25th 2023, LEAP conference

Océane Duluins (Presenter) Goedele Van den Broeck and Philippe Baret Paper co-authors: Monica Schuster and Anton Riera

Photograph by Philippe Baret

Livestock production is confronted with major challenges

The protein transition as a solution?

Protein transition :

Rebalancing of protein consumption between animal and alternative proteins

→ Better for the environment, for health and animal welfare

The Walloon context

 \sim 5,000 dairy farms \sim 6,500 beef farms ← 48% of farms ← 1,1 million cattle

Diversity of livestock production systems:

Feed and grazing practices

Land size, etc.

Economic precarity of some farmers

Dependence on feed imports

Livestock production systems are embedded in a multi-level system

Research questions

- How will the protein transition impact the economic performance of Walloon beef and dairy farms?
- 2) Will the two sectors be impacted in the same way?

\rightarrow Accounting for **diversity**

Three factors associated with a protein transition

Data and methods

Database: Farm Accountancy Data Network (FADN)

Specialized dairy (OTE450) and beef farms (OTE460)

Panel data: 2014-2017 (Unbalanced pool)

Number of observations:

- Beef sector: 208 65 farms
- Dairy sector: 324 95 farms

Data analysis: Random model effects

Model estimated: $Y_{it} = \alpha + \beta X_{it} + \theta_t + \upsilon_t + a_i + \upsilon_{it}$

Dairy farms are more profitable and less subsidy-reliant

			Dairy sector	Beef sector	Sector comparison
Number of observations			N = 324	N = 208	
Name		Unit	Mean	Mean	Two-sided p-value
Milk productivity		L/cow	6,322	/	/
Gross revenues/ha	a	€/ha	2,918	1,810	***
Operating expenses/ha	b	€/ha	1,319	1,061	**
Operating profits/ha	c = a-b	€/ha	1,599	748	***
Operating profit margin	a/c	%	55	42	***
Subsidies/ha		€/ha	402	600	***
Subsidy dependence	Subsidies/Gross revenues	%	13	28	***

Significant differences tested using two-sided t-tests: p<0.1*; p<0.05**; p<0.01***

Dairy farms rely more on the use of concentrates

		Dairy sector	Beef sector	Sector comparison
Number of observations		N = 324	N = 208	
Name	Units	Mean	Mean	Two-sided p-value
Herd size	LSU	121.40	147.43	***
Grazing livestock density	LSU/SFL	1.96	2.23) ***
Cattle area	На	64.73	68.64	
 Share of grassland	%	84.37	88.07	**
Concentrate total	Kg/year/farm	122,581	73,620	***
 Concentrate autonomy	%	6.00	18.78	***
Labour	Annual work unit	13.54	27.56	***

Significant differences tested using two-sided t-tests: p<0.1*; p<0.05**; p<0.01***

Arrows represent a statistically significant correlation at 1% or 5%.

1) Operating profit margin is indifferent to herd size

2) Extensive grazing systems providing environmental services and economic benefits

Photograph by Philippe Baret

- 1) Most economic indicators are not dependent on farms characteristics
- 2) But subsidies are

Grazing livestock density and the size of the farm positively correlated to subsidies per hectare and subsidy dependence

3) Without subsidies, farmers are facing economic losses

→ Business model based on subsidies rather than on actual market supply and demand factors

The economic implications of the protein transition are very different depending on the sector.

Policy implications:

Dairy sector: support to more autonomous production systems based on-farm fodder production

Beef sector: how to gear a protein transition in which breeders are not left behind ?

Thank you for your attention !

Article available in Frontiers in Sustainable Food Systems

For further information: oceane.duluins@uclouvain.be

Complementary presentation by Riera Anton this afternoon

