# A study on the use of chemical pesticides for WWF's meat guides: Complementary study for WWF Sweden

Final report - November 2021

## Sytra – UCLouvain

Antoine de Clippele

Anton Riera

**Philippe Baret** 





This publication was produced with the financial support of the European Union. Its contents are the sole responsibility of WWF and other Eat4Change project partners and do not necessarily reflect the views of the European Union.

CO-FUNDED BY THE EUROPEAN



## About the authors

This study was carried out by <u>Sytra</u>, a research team from the Belgian Université catholique de Louvain (de Clippele Antoine, Riera Anton, Baret Philippe).

## UCLouvain



## Funding

The research was carried out on behalf of WWF Sweden as a follow up to a previous study developed within the context of the EU funded project *Eat4Change*. This deliverable is also aimed to feed into that project.

CO-FUNDED BY THE EUROPEAN UNION



## Table of contents

| Chapter 1.       | Introduction                                                                | 5           |
|------------------|-----------------------------------------------------------------------------|-------------|
| 1.1.             | Context of the study                                                        | 5           |
| 1.2.             | Scope of the complementary study                                            | 5           |
| 1.3.             | Content of the report                                                       | 5           |
| Chapter 2.       | Reminder of methodological steps                                            | 7           |
| 2.1.             | Choice of the indicator and unit of measurement                             | 7           |
| 2.2.             | General principle                                                           | 7           |
| 2.3.             | Calculation steps                                                           | 7           |
| Chapter 3.       | Data collection                                                             | 9           |
| 3.1.             | Scope of assessment                                                         | 9           |
| 3.2.             | Data sources                                                                | 10          |
| 3.3.             | Specific vs. generic data                                                   | 10          |
| 3.4.             | Collected data - Feeding practices                                          | 11          |
| 3.4.1.           | Main assumptions                                                            |             |
| 3.4.2.           | Allocation and consideration of non-productive animals in the beef sector   |             |
| 3.4.3.           | Certified production systems                                                | 11          |
| 3.5.             | Collected data - Pesticides use of feed crops                               | 14          |
| 3.5.1.           | Available data in Eurostat                                                  |             |
| 3.5.2.           | The case of non-European countries                                          |             |
| 3.5.3.           | Assumptions and values used for the calculations                            |             |
| 3.5.4.           | The case of soybean                                                         |             |
| 3.6.             | Status of assessment                                                        |             |
| Chapter 4.       | Calculation tool                                                            | 19          |
| 4.1.             | General functioning                                                         |             |
| 4.2.             | Updates for complementary study                                             | 20          |
| Chapter 5.       | Results                                                                     | 21          |
| 5.1.             | Beef                                                                        |             |
| 5.2.             | Broiler                                                                     |             |
| 5.3.             | Cheese                                                                      |             |
| 5.4.             | Eaas                                                                        |             |
| 5.5.             | l amh                                                                       |             |
| 5.6              | Plant-based products                                                        | 27          |
| 5.7.             | Pork                                                                        |             |
| Bibliograph      | IV                                                                          |             |
| Appondix 1       | - Mothodology                                                               | 37          |
|                  | rieniouology                                                                | J/<br>רד    |
| NECESSO<br>Input | y mpuls - i eeumy practices<br>1 - Food conversion ratio (FCR)              | / ن<br>רד   |
| Input            | <ol> <li>Leed conversion Late (Lett).</li> <li>Food compositions</li> </ol> |             |
| Innut            | 3 - Slaughter and carcass vields                                            | ۵۵.<br>۵۱   |
| Nerecca          | rv innuts - Pesticides use of feed crons                                    | 0+ 40<br>41 |
| Innut            | 4 – Total nesticides use of feed crons                                      | н<br>И      |
| Input            | 5 – Areas of feed crops                                                     |             |
| P ***            |                                                                             |             |

| Differentiation of data                                           |
|-------------------------------------------------------------------|
| Pesticides use of feed cropsFeeding practices and pesticides uses |
| Feeding practices                                                 |
| Appendix 2 – Input data for feeding practices and pesticides uses |
| Feed conversion ratios                                            |
| Feed consumption of non-productive animals                        |
| Feed conversion ratios used in the calculations                   |
| Feed composition                                                  |
|                                                                   |
| Slaughter and carcass yields                                      |
| Pesticides uses of feed ingredients                               |

## Chapter 1. Introduction

#### 1.1. Context of the study

During the first semester of 2021, a report entitled *A study on the use of chemical pesticides for WWF's meat guides: Methodological and data update* was produced (Riera et al., 2021). The research was carried out on behalf of several WWF European offices and in the context of the EU funded project *Eat4Change* and the Swedish PostCode funded project *One Planet Food*.

Following this initial study and in the context of the re-launch of the updated Swedish Meat Guide, WWF Sweden expressed its interest for a complementary study focusing on a number of additional animal and plant-based products.

#### 1.2. Scope of the complementary study

WWF Sweden provided a list of 87 products which had to be included in the updated Swedish Meat Guide. About half of these products had already been assessed in the first study. The other half were assessed through this complementary study. Additionally, some products which were assessed during the first study were updated in the light of new data collected by WWF Sweden.

Three main tasks were performed:

- Data update: Already assessed Swedish products were updated with the new data collected by WWF Sweden.
- Data collection: Input data for the 41 new products to assess was collected, including data from new countries of origin not included in the initial assessment (such as Germany, Poland, New Zealand, Brazil, etc.);
- Calculations and update of the calculation tool: The calculation tool was updated to account for the new countries of origin;

#### 1.3. Content of the report

This report presents the results regarding the use of chemical pesticides for the additional products which had to be assessed. The following sections are organised as follows:

- Chapter 2 provides a reminder of the methodological steps involved in the calculations;
- describes the data collection for the additional products (sources, scope, calculation hypotheses);
- Chapter 4 presents the calculation tool which was developed and the updates which were performed for this complementary assessment;
- Chapter 5 provides the results, presented per product category;

## Chapter 2. Reminder of methodological steps

This chapter provides a reminder of the methodological steps which are necessary to assess the use of chemical pesticides associated with animal products. It is a shortened version of Chapter 2 in the initial report (Riera et al., 2021). More detailed information regarding the necessary inputs is provided in Appendix 1.

#### 2.1. Choice of the indicator and unit of measurement

The indicator used in the context of this study to reflect the level of pesticides (or plant protection products; PPPs) use of a particular product are the amounts of pesticide active ingredients (a.i.) used to produce one unit of food output.

Such an indicator merely reflects the quantities of pesticides used, expressed as active ingredients. However, it does not give an indication on the toxicity of these active ingredients nor on the actual environmental damage that may be induced by the use of these pesticides.

The unit used to measure this indicator is the following: g a.i./kg of edible product.

#### 2.2. General principle

The general principle when assessing the use of pesticides associated to animal products consists in evaluating the quantities of pesticides used during the cultivation of crops used as animal feed.

As a consequence, performing such an assessment relies on the characterisation of two main parameters:

- The pesticides use of feed crops: i.e., the quantities of pesticide active ingredients used for the pest management of feed crops;
- (2) The feeding practices of the animals: i.e., the quantities of feed ingredients consumed by each animal, from which an animal-based product will be obtained (meat, eggs, milk, etc.).

#### 2.3. Calculation steps

The overall calculation process requires six inputs (related to the two main parameters introduced above) and can be subdivided in three steps (Figure 1):

1. Evaluating the pesticides use of feed crops. The three necessary inputs at this level include: the total use of pesticides per feed crop, the total area of each feed crop and the yields of these feed crops. This allows to calculate the relative use of pesticides of each feed crop, per area (kg a.i./ha) or per volume (g a.i./kg). This constitutes the intermediate output A.

- 2. Characterising the feeding practices. Feeding practices too are represented by three inputs: the feed conversion ratio (FCR), the feed composition and the slaughter and carcass yields. They allow to calculate the net consumption of each feed ingredient (kg feed ingredient/kg edible product). This constitutes the intermediate output B.
- 3. Calculating the relative pesticides use of animal products. Combining intermediate outputs A and B, it is possible to assess the relative use of pesticides associated with animal productions as a result of their feeding practices.



Figure 1. Necessary inputs and calculation steps to assess the relative pesticides use of livestock products. **Note:** The calculations should also account for the dry matter contents and transformation yields of different feed ingredients (e.g., amount of raw soy needed per kg of soybean meal).

## Chapter 3. Data collection

#### 3.1. Scope of assessment

As noted in point 1.2, this study is based on an initial assessment realised in June 2021. The purpose of this follow-up study was to evaluate 87 animal and plant-based products, of which 41 were not previously evaluated in the original study. In addition, some of the previously evaluated products were updated in the light of new data.

The products range over 20 countries of origin and 8 product categories (Table 1).

Table 1. Countries of origin and product categories included in the list of products to be assessed in the additional study.

| 20 countries in the list | 8 product categories |
|--------------------------|----------------------|
| Belgium (1)              | Beef (14)            |
| Brazil (1)               | Broiler (15)         |
| Cyprus (2)               | Cheese (21)          |
| Denmark (5)              | Eggs (8)             |
| EU (8)                   | Game (1)             |
| Finland (3)              | Lamb (9)             |
| France (4)               | Plant-based (5)      |
| General (5)              | Pork (14)            |
| Germany (5)              | -                    |
| Greece (3)               | -                    |
| Ireland (2)              | -                    |
| Italy (1)                | -                    |
| Netherlands (4)          | -                    |
| New Zealand (1)          | -                    |
| Poland (4)               | -                    |
| South-America (1)        | -                    |
| Spain (1)                | -                    |
| Sweden (34)              | -                    |
| Thailand (1)             | -                    |
| USA (1)                  | -                    |
| TOTAL: 87                | TOTAL: 87            |

Notes: Numbers in parentheses refer to the number of products included in each country or product category.

#### 3.2. Data sources

In order to assess the use of pesticides associated with livestock products, a data collection process was necessary to characterise these products with regards to the 6 inputs listed in Figure 1 and in accordance with the defined differentiation level specified in Appendix 1 – Methodology.

This data collection process relied on four data sources:

- EU-level databases:
  - Eurostat was the main database which was consulted. It provided the necessary inputs to assess the pesticides use of feed crops for the European countries of interest (Eurostat, 2021b).
- Non- EU databases:
  - For the United States of America (USA), a national database on pesticides was used: USGS NAWQA Pesticide national Synthesis Project (Wieben, 2020).
- Scientific and grey literature:
  - For the pesticides use of feed crops, Eurostat data had to be complemented by literature data for feed crops which are imported from non-European countries.
  - For the inputs related to feeding practices, scientific and grey literature (technical reports) constituted the main data source.
- **Contacts with national experts:** Finally, as data on feeding practices was in general rather scarce (at least at the desired level of differentiation), national experts were contacted in each country of interest to validate and complement the data which had been found in the literature.

#### 3.3. Specific vs. generic data

As far as possible, the assessments and calculations were based on input data which is specific for each product, in accordance with the desired level of differentiation (product – country – production system; see Appendix 1 – Methodology).

Nevertheless, the necessary data was not always available. In such cases, generic data was used.

In the case of pesticides use of feed crops, when a country-specific value was missing for a certain feed crop, there were three possibilities: using a value for a similar crop in the same country; using a value for the same crop in a neighbouring country; using the average value of that crop for the available countries.

In the case of feeding practices, when a product-specific input value was missing, a list of generic values could be used as an alternative. These generic values are either specific to the country or to the production system.

#### 3.4. Collected data - Feeding practices

#### 3.4.1. Main assumptions

The specific data and calculation inputs related to feeding practices are presented in Appendix 2 – Input data for feeding practices :

- Table 16 presents the feed consumption of non-productive animals;
- Table 17 presents FCR values for the assessed products;
- Table 18 presents feed compositions per product;
- Table 19 presents slaughter and carcass yields.

As much as possible, the calculations were directly based on the feeding practices found in the literature or advised by experts. For many products, the core data was sufficient. However, for some products, it was necessary to make additional assumptions as the original data needed some fine-tuning. These additional assumptions are summarised in Table 2.

#### 3.4.2. Allocation and consideration of non-productive animals in the beef sector

For the production of beef, only the feed consumed by the productive animal was considered (with the exception of USA beef). This implies that the calculations do not include the whole beef system. Rather, only the meat and feed rations of the most representative animal categories in the system, according to data from Moberg et al. (2019), were considered: young bulls in Sweden, bullocks in Ireland and bulls in Germany and Poland.

It was chosen not to include all the animals in the system because this required to estimate and allocate the impacts of suckler and dairy cows, which was not straightforward with the available data: feed rations were provided per year for cows and over the entire lifetime for all other animal categories. Accounting for all animals in the system involved too many assumptions and uncertainties, leading to a general lack of transparency of the calculations. Additionally, as the impacts of suckler cows are distributed over their entire lifecycle and those of dairy cows are mainly allocated to the production of milk, it is likely that including all animals in the system would not significantly change the results.

#### 3.4.3. Certified production systems

Several Swedish products were certified under the *Svenskt Sigill* certification. While no study could be found to define the exact impact of the certifications on the feeding practices or the use of pesticides, assumptions were made to estimate their impact in the calculations, based on the certification rules and exchanges with the certification body (pers. comm., 2021). The main rules for each product category are summarised in Box 1.

| Product         | Country     | Certification                       | Calculation hypotheses                                                                                                                                                                                                                                | Main reference                                           |
|-----------------|-------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Beef            | Germany     | Conventional                        | Feed ration was based on <i>bulls</i> production system                                                                                                                                                                                               | Moberg et al.,<br>(2019)                                 |
|                 | Ireland     | Conventional                        | Feed ration was based on <i>bullocks</i> production system                                                                                                                                                                                            | Moberg et al.,<br>(2019)                                 |
|                 | Sweden      | Indoor                              | Feed ration was based on <i>dairy young bulls</i> production system                                                                                                                                                                                   | Moberg et al.,<br>(2019)                                 |
|                 | Sweden      | Animals on some<br>pasture          | Feed ration was based on <i>suckler young bulls</i> production system                                                                                                                                                                                 | Moberg et al.,<br>(2019), Sigill (Pers.<br>Comm. (2021)) |
|                 | Sweden      | Svenskt Sigill<br>Klimatcertifierad | Same diet as 'Animals on some<br>pasture'. Soybean meal in the ration<br>is considered to be imported from<br>the USA.                                                                                                                                | Moberg et al.,<br>(2019), Sigill (Pers.<br>Comm. (2021)) |
| Broiler         | Germany     | Conventional                        | Based on average European feeding practices                                                                                                                                                                                                           | van Grinsven et al.,<br>(2019)                           |
|                 | Netherlands | Conventional                        | Based on average European feeding practices                                                                                                                                                                                                           | van Grinsven et al.,<br>(2019)                           |
|                 | Poland      | Conventional                        | Based on average European feeding practices                                                                                                                                                                                                           | van Grinsven et al.,<br>(2019)                           |
| Cheese          | All         | All <sup>1</sup>                    | Input of 10 kg of milk for 1 kg of<br>hard cheese and 6.5 kg of milk for<br>soft and semi-hard cheese                                                                                                                                                 | Moberg et al.,<br>(2019)                                 |
|                 | France      | Chèvre                              | Input of 5L of goat milk for 1 kg of cheese                                                                                                                                                                                                           | IDELE, (2015)                                            |
|                 | Italy       | Mozzarella                          | Input of 8L of milks or 1 kg of mozzarella                                                                                                                                                                                                            | Palmieri et al.,<br>(2017)                               |
|                 | Sweden      | Svenskt Sigill<br>Klimatcertifierad | Soybean meal in the ration is<br>considered to be imported from the<br>USA.                                                                                                                                                                           | Moberg et al.,<br>(2019), Sigill (Pers.<br>Comm. (2021)) |
| Lamb            | Sweden      | Conventional                        | A range of results is provided. A low-<br>end estimate is based on data which<br>does include pasture. A high-end<br>estimate is based on the assumption<br>that the area of pasture available for<br>animals is entirely treated with<br>pesticides. | Wallman et al.,<br>(2011)                                |
| Pork            | Poland      | Conventional                        | Based on European average feeding practices.                                                                                                                                                                                                          | van Grinsven et al.,<br>(2019)                           |
|                 | Sweden      | Svenskt Sigill<br>Klimatcertifierad | Derived from conventional ration<br>with the part of soybean meal in the<br>ration limited at 5%.                                                                                                                                                     | Zira et al., (2021),<br>Sigill (Pers. Comm.<br>(2021))   |
| Plant-<br>based | EU          | Mycoprotein                         | Feed composition of 100% wheat.                                                                                                                                                                                                                       | Quorn, (2018)                                            |

| Table 2 Presentation    | of the additional | assumptions | made in the | calculation | of some feed rations |
|-------------------------|-------------------|-------------|-------------|-------------|----------------------|
| 1 abie 2. 1 resentation | or the additional | assumptions | made m me   | culculation | of some recurations. |

Note: <sup>1</sup> This does not apply to the following products: Mozzarella (Italy) and Chèvre (France).

Box 1. Feeding practices regarding the Swedish certifications of Sigill

Svenskt Sigill owns three certifications: Svenskt Sigill is the base-level certification. Additionally, Svenskt Sigill Naturbeteskött and Svenskt Sigill Klimatcertifierad have additional rules, respectively targeted towards natural pasture management and climate.

Specific rules for each certification are detailed in Table 3. This list is not exhaustive as only the rules which have a direct impact on the feeding practices, and thus the use of pesticides, are described. In addition, some rules from the base-level certification (*Svenskt Sigill*) apply across all animal productions:

- At least 70% of the feed must be grown in Sweden;
- At least 30% of the feed must be *Sigill*-certified;
- Soy and palm oil feed must be certified according to RTRS, RSPO or similar.

Table 3. Sigill certification rules related to the feeding practices (Helena Allard, pers. comm., 2021)

| Product | Certification                       | Measures related to the feeding practices                                                               |  |  |
|---------|-------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Dairy   | Svenskt Sigill                      | At least 50% (DM) of pasture or roughage in the ration.                                                 |  |  |
|         |                                     | On farms with certified milk production, the use of plant protection                                    |  |  |
|         |                                     | products on pasture or on ley that are intended for cattle used for milk                                |  |  |
|         |                                     | production are not allowed. Exception at tillage of grassland.                                          |  |  |
|         | Svenskt Sigill<br>Klimatcertifierad | No soy from deforested areas (e.g. Brazil).                                                             |  |  |
|         |                                     | At least 70% of grass or roughage in the ration during the year for heifers and 50% for lactating cows. |  |  |
|         |                                     | At least 60 % of the feed, on an annual basis, shall be produced on the farm                            |  |  |
|         |                                     | or in collaboration with nearby farms. Continuous improvements should                                   |  |  |
|         |                                     | be made in order to reach 70%.                                                                          |  |  |
| Beef    | Svenskt Sigill                      | At least 50 % of the feed must consist of roughage.                                                     |  |  |
|         | Svenskt Sigill                      | At least 70% of the feed, on an annual basis, shall be produced on the farm                             |  |  |
|         | Klimatcertifierad                   | or in collaboration with nearby farms.                                                                  |  |  |
|         |                                     | 70 % of the feed ration must consist of roughage for heifers and steers. 65                             |  |  |
|         |                                     | % of the feed ration must consist of roughage for bulls.                                                |  |  |
|         |                                     | No soy from deforested areas (e.g. Brazil).                                                             |  |  |
|         | Svenskt Sigill                      | Cattle weighing over 250 kg shall be fed with at least 70% (DM) roughage /                              |  |  |
|         | Naturbeteskött                      | grazing in the total feeding ration, calculated per barn period and grazing                             |  |  |
|         |                                     | season respectively.                                                                                    |  |  |
| Lamb    | Svenskt Sigill                      | At least 50% of the feed for all animals must consist of roughage.                                      |  |  |
|         |                                     | All lambs must be on pasture at least one month of their life. In practice, all                         |  |  |
|         |                                     | lambs graze during the entire summer (3-4 months at least), do not eat any                              |  |  |
|         |                                     | cereals and are then slaughtered in the autumn. All ewes are on pasture as                              |  |  |
|         |                                     | well during the summer and only eat grass during that period.                                           |  |  |
|         | Svenskt Sigill                      | At least 70% of the feed for the ewes must come from pasture or roughage                                |  |  |
|         | Klimatcertifierad                   | and 50% for the lambs.                                                                                  |  |  |
|         |                                     | At least 70% of the feed, on an annual basis, shall be produced on the farm                             |  |  |
|         |                                     | or in collaboration with nearby farms.                                                                  |  |  |
|         |                                     | No soy from deforested areas (e.g. Brazil).                                                             |  |  |

|         | Svenskt Sigill<br>Naturbeteskött    | More than half of the grazed pastures must be natural pastures (i.e. pastures which are not ploughed nor fertilised or irrigated).                                          |
|---------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                     | Adult animals must graze on natural pasture for at least half of the grazing period. Lambs must graze on natural pasture for at least 4 weeks.                              |
| Pork    | Svenskt Sigill<br>Klimatcertifierad | Maximum 5% of soy coming from deforested areas (e.g. Brazil) in the feed ration.                                                                                            |
| Broiler | Svenskt Sigill<br>Klimatcertifierad | FCR should be of maximum 1,8 kg feed/kg live weight for fast-growing<br>breeds and 2,1 kg feed/kg live weight for slow-growing breeds.<br>Maximum 15% of soy in the ration. |

#### 3.5. Collected data - Pesticides use of feed crops

#### 3.5.1. Available data in Eurostat

For European countries, data was derived from Eurostat (Eurostat, 2021b, 2021a), which comprises national statistics on pesticide use for each crop (in kg a.i.).

The period of each data collection covers five years, starting from the first five-year period 2010-2014. The countries are obliged to collect data at least for one reference year out of five years and cover all plant protection treatments associated with the crop. As a result, the frequency and selection of year(s) differ among the countries. For example, some countries collect data only in one year of the five-year period while others do so each year or every second or third year. Some countries collect different crops in different years (e.g., apples in 2011 and potatoes in 2014).

A wide diversity of pesticides categories is available in the Eurostat database. In this case, six main categories were considered and summed:

- F: Fungicides and bactericides
- H: Herbicides, haulm destructors and moss killers
- I: Insecticides and acaricides
- M: Molluscicides
- PGR: Plant Growth Regulators
- Other: Other plant protection products.

#### 3.5.2. The case of non-European countries

For non-European countries, pesticides data was either found in national databases or in literature.

For the USA, data was derived from the Geological Survey (USGS) database (Wieben, 2020). The pesticides uses were calculated by summing the quantities of the twenty main pesticides used for each crop. Data on USA soybean was included and used as a reference for USA animal products (unlike European countries, for which Brazilian soybean was considered; see section 3.5.4).

For Brazil, the pesticides data was derived from Prudêncio da Silva et al. (2014) except for soybean, for which the values were found in Pollak (2020) (see section 3.5.4).

No data was found for Thailand and New Zealand.

#### 3.5.3. Assumptions and values used for the calculations

As mentioned in the Appendix 1 – Methodology, 13 categories of feed ingredients were included in the model. In general, it was assumed that all feed ingredients were produced nationally, apart from soy (see paragraph 3.5.4).

In the case of European countries, for each feed ingredient, it was necessary to find the corresponding crop in Eurostat in order to assign a pesticides use value for each ingredient in each country. For each feed ingredient, a corresponding crop reference in Eurostat was thus defined (Table 20).

For some crops (wheat; barley; rape and turnip), Eurostat provides more than one crop reference, for which the availability of data can vary from country to country. The reference crop was thus adapted accordingly.

It must be noted that for some crops and countries, Eurostat data is missing. In these cases, either values from neighbouring countries or the average value of available countries were used <sup>1</sup>. This is indicated in Table 20 in Appendix 2 – Input data for feeding practices.

The corresponding pesticides use values which were used in the calculations are presented in Table 5 per unit of DM output (g a.i./kg DM crop).

#### 3.5.4. The case of soybean

When used as animal feed, soybean meal was in general considered to come from Brazil. As such, it is the only feed ingredient for which a foreign origin was assumed. Indeed, although values for Austrian and French soy are available in Eurostat, an average figure for Brazilian soy was considered given this is the main origin of soy in the EU. For the USA, it was assumed that American soybean meal was used to feed the animals.

The case of this feed ingredient and the different values of pesticides use found in the literature are further detailed in Box 2 below.

<sup>&</sup>lt;sup>1</sup> Eurostat does not provide an EU-wide average value which would cover all member states. Such an average value would thus need to be calculated manually, based on Eurostat data. In the context of this study, when average values are used, these are calculated based on the available values for the European countries considered in this study.

Box 2. Pesticides use of soybean in different countries and according to different references

Unlike all other feed ingredients, soybean meal was not assumed to be produced nationally. Indeed, the EU imports 34 million tonnes of soybean meal annually, of which 13,5 million tonnes (40%) come from Brazil, the first exporter of soy to the EU. It is followed by the USA with 8,5 million tonnes (25% of all EU imports). EU production of soy only represents 2,9 million tonnes per year (i.e., less than 10% of EU soybean meal consumption) (BFA, 2020a).

In the light of these numbers, in this study it was considered that all soybean meal comes from Brazil. As Eurostat does not provide any pesticides use value for non-EU crops, a figure had to be found in the literature. For Brazil, three values are compared in Table 4. The values by Pollak (2020) are the ones which were used in the calculations as they are more recent and are an update of the values by Meyer & Cederberg (2010), which were used in the previous Swedish Meat Guide. The values by Prudêncio da Silva et al. (2010) were also used in previous Meat Guides but were not included in the present assessment as they are less recent.

The table also includes values for EU-countries (Austria and France) and the USA, which allow for a comparison against Brazil. For the USA, two values are compared in Table 4. The value derived from Perry et al. (2016) was used in the initial study. The second value is calculated from the pesticides database of USGS NAWQA for the year 2017. This value was used in the present assessment. Comparing countries, Brazil presents significantly higher pesticides use values.

| Country | Reference <sup>1</sup>           | Herbicides | TOTAL PPP  | Herbicides | TOTAL PPP |
|---------|----------------------------------|------------|------------|------------|-----------|
|         |                                  | per ha     | per ha     | per kg     | per kg    |
|         |                                  | kg a.i./ha | kg a.i./ha | g a.i./kg  | g a.i./kg |
| Brazil  | Prudêncio da Silva et al. (2010) | -          | 2,5        | -          | 0,9       |
|         | Meyer & Cederberg (2010)         | 4,2        | 5,8        | 1,5        | 2,1       |
|         | Pollak (2020) <sup>2</sup>       | 4,4        | 6,5        | 1,5        | 2,2       |
| Austria | Eurostat                         | 0,5        | 0,6        | 0,2        | 0,2       |
| France  | Eurostat                         | 1,4        | 1,5        | 0,5        | 0,5       |
| USA     | Perry et al. (2016) <sup>3</sup> | 1,4        | 2,1        | 0,5        | 0,8       |
|         | Wieben, (2020) <sup>4</sup>      | -          | 3,5        | -          | 1,0       |

Table 4. Pesticide use values for soybean in different countries and according to different references.

Notes:

<sup>1</sup> The reference years are unknown for Prudêncio da Silva et al. (2010); 2008 for Meyer & Cederberg (2010); 2008-2018 for Pollak (2020); 2017 for Austria, France and Wieben (2020); 1998-2011 for Perry et al. (2016).

<sup>2</sup> The figures by Pollak (2020) are the ones which were used in the calculations.

<sup>3</sup> For Perry et al. (2016), only the per ha value for herbicide use was available. In order to determine the total value, the shares of other pesticides categories were assumed the same as in Pollak (2020). The per kg values were obtained based on FAOSTAT data for soybean yield in the USA over the 1998-2011 period (FAOSTAT, 2021).

<sup>4</sup> For Wieben (2020), crop yields for the calculations were derived from US crops yield statistics (USDA, 2020).

| Countries   | Grazed<br>grass | Grass<br>silage/<br>hay | Maize<br>silage | Other<br>forage | Cereals -<br>Wheat | Cereals -<br>Maize | Cereals -<br>Barley | Olea-<br>/protea-<br>ginous | Soybean<br>meal -<br>BR | Soybean<br>meal -<br>Other | Sun-<br>flower<br>meal | Rapeseed<br>meal | Sugar<br>beet |
|-------------|-----------------|-------------------------|-----------------|-----------------|--------------------|--------------------|---------------------|-----------------------------|-------------------------|----------------------------|------------------------|------------------|---------------|
| Sweden      | 0,01            | 0,01                    | 0,01            | 0,01            | 0,09               | 0,15               | 0,09                | 0,10                        | 2,59                    | 1,21                       | 0,71                   | 0,23             | <0,01         |
| France      | 0,00            | 0,00                    | 0,06            | 0,02            | 0,38               | 0,13               | 0,37                | 0,84                        | 2,59                    | 1,21                       | 0,71                   | 0,63             | 0,04          |
| Belgium     | 0,02            | 0,01                    | 0,08            | 0,02            | 0,39               | 0,16               | 0,32                | 0,41                        | 2,59                    | 1,21                       | 0,71                   | 0,48             | 0,08          |
| Brazil      | -               | -                       | -               | -               | -                  | 0,69               | -                   | -                           | 2,59                    | 1,21                       | -                      | -                | -             |
| Cyprus      | 0,01            | 0,02                    | 0,06            | 0,02            | 1,09               | 0,15               | 1,76                | 0,32                        | 2,59                    | 1,21                       | 0,71                   | 0,42             | 0,06          |
| Denmark     | 0,00            | 0,01                    | 0,02            | 0,01            | 0,22               | 0,15               | 0,11                | 0,41                        | 2,59                    | 1,21                       | 0,71                   | 0,28             | 0,06          |
| Germany     | 0,02            | 0,01                    | 0,13            | 0,02            | 0,38               | 0,15               | 0,44                | 0,41                        | 2,59                    | 1,21                       | 0,71                   | 0,70             | 0,08          |
| Greece      | 0,01            | 0,01                    | 0,06            | 0,02            | 0,27               | 0,15               | 0,59                | 0,41                        | -                       | 1,21                       | 0,71                   | 0,42             | 0,06          |
| Ireland     | 0,01            | 0,01                    | 0,10            | 0,03            | 0,54               | 0,15               | 0,44                | 0,49                        | 2,59                    | 1,21                       | 0,82                   | 1,00             | 0,06          |
| Italy       | 0,00            | 0,01                    | 0,06            | 0,02            | 0,12               | 0,21               | 0,59                | 0,41                        | 2,59                    | 1,21                       | 0,71                   | 0,42             | 0,06          |
| Netherlands | 0,02            | 0,01                    | 0,08            | 0,02            | 0,26               | 0,15               | 0,22                | 0,41                        | 2,59                    | 1,21                       | 0,71                   | 0,34             | 0,06          |
| New         | -               | -                       | -               | -               | -                  | -                  | -                   | -                           | -                       | 1,21                       | -                      | -                | -             |
| Zealand     |                 |                         |                 |                 |                    |                    |                     |                             |                         |                            |                        |                  |               |
| Poland      | 0,01            | 0,01                    | 0,13            | 0,02            | 0,27               | 0,14               | 0,18                | 0,41                        | 2,59                    | 1,21                       | 0,71                   | 0,82             | 0,04          |
| Argentina   | -               | -                       | -               | -               | -                  | -                  | -                   | -                           | -                       | 1,21                       | -                      | -                | -             |
| Spain       | 0,01            | 0,01                    | 0,06            | 0,02            | 0,27               | 0,15               | 0,59                | 0,41                        | 2,59                    | 1,21                       | 0,71                   | 0,42             | 0,06          |
| Thailand    | -               | -                       | -               | -               | -                  | -                  | -                   | -                           | -                       | 1,21                       | -                      | -                | -             |
| USA         | 0,08            | 0,03                    | -               | 0,03            | 0,35               | 0,48               | 0,35                | 1,21                        | 2,59                    | 1,21                       | -                      | -                | -             |
| General-EU  | 0,01            | 0,01                    | 0,06            | 0,02            | 0,27               | 0,15               | 0,59                | 0,41                        | 0,40                    | 1,21                       | 0,71                   | 0,42             | 0,06          |

Table 5. Values of pesticides uses per unit of dry matter output (g a.i./kg DM feed crop) for twelve feed ingredients in the countries of interest.

Notes:

- 'General – EU' is the average of the pesticide use values of the European countries considered in the study.

- For some crops, some countries do not report all the quantities of pesticides used (e.g. for sugar beet in Sweden, only quantities of Fungicides are reported whereas Insecticides and Herbicides are reported as 'Confidential' and hence not quantified).

- In this table, 'Soybean meal – Other' is considered to be USA soy.

#### 3.6. Status of assessment

Based on the collected data (generic and specific), 53 products were assessed (i.e., input data was collected and a specific result was calculated). Additionally, there are 25 organic products for which the pesticides impact is considered to be zero by definition in the Meat Guides. Adding these products to the 53 assessed products, there is a total of 78 products out of the list of 87 products for which a result is available.

Due to a lack of data, 9 products were not assessed (Table 6).

| Products | Total to assess | Not-Assessed | % Not assessed | Missing data                       |
|----------|-----------------|--------------|----------------|------------------------------------|
| Lamb     | 9               | 5            | 56%            | Feeding practices, pesticides uses |
| Broiler  | 15              | 1            | 7%             | Pesticides uses                    |
| Beef     | 14              | 1            | 7%             | Pesticides uses                    |
| Cheese   | 21              | 2            | 10%            | Feeding practices                  |
| Total    | 87              | 9            | 10%            | -                                  |

Table 6. Products for which no results are available in this study.

Note: Products which were not assessed are:

- Sigill-certified lamb for Sweden (3); conventional lamb from Ireland and New Zealand;

- Conventional broiler from Thailand;

- Conventional beef from Brazil;

- Conventional halloumi from Cyprus; conventional feta from Greece.

## Chapter 4. Calculation tool

#### 4.1. General functioning

To perform the assessment for each product, a calculation tool was developed in an Excel spreadsheet. It consists of six tabs (Figure 2):

List of products INPUTS - Feeding practices INPUTS - PPP feed crops RESULTS - PPP animal products ANALYSIS - Pivot Tables ANALYSIS - Charts

Figure 2. Screenshot of the five tabs included in the calculation tool.

#### (1) List of products:

- No manual entry is needed in this tab.
- Contains the list of products provided by WWF.

#### (2) INPUTS – Feeding practices:

- $\circ$  No manual entry is needed in this tab<sup>2</sup>.
- Contains the generic data regarding feeding practices, which is useful when no specific data is available for certain products.

#### (3) INPUTS – PPP feed crops:

- $\circ$  No manual entry is needed in this tab<sup>3</sup>.
- Contains values of pesticides uses of feed crops for a number of countries. Mainly includes European countries (Eurostat), and a few non-European countries.

#### (4) RESULTS – PPP animal products:

- Manual entry is needed in this tab.
- This is where the entry of input data happens and calculations occur based on the input data.
- One needs to select whether the calculations are based on specific or generic feeding practices data:
  - Specific data: when selecting specific data, the user needs to manually enter the values of the feeding practices inputs in the table. The tool then automatically calculates the outputs based on these values.
  - Generic data: when selecting generic data, the tool automatically generates the outputs based on the data contained in the tab 'INPUTS – Feeding practices'. In this case the user only needs to indicate that the calculations must be based on generic data but no actual entry of data is needed.

 $<sup>^2</sup>$  Except if the generic data regarding feeding practices needs to be modified or updated (e.g., with more recent/accurate data).

<sup>&</sup>lt;sup>3</sup> Except if the reference values for certain feed ingredients need to be modified (e.g., to adapt the country of origin of soybean meal).

#### (5) ANALYSIS – Pivot tables:

- Manual entry is needed in this tab.
- This is an interactive tab in which the user can select specific products, product categories or countries of origin. These can then be compared in terms of their outputs (use of pesticides). Results are presented in the form of tables.

#### (6) ANALYSIS – Charts:

- Manual entry is needed in this tab.
- This is an interactive tab in which the user can select specific products, product categories or countries of origin. These can then be compared in terms of their outputs (use of pesticides). Results are presented in the form of charts.

#### 4.2. Updates for complementary study

For the purpose of this complementary study, the tool was updated on two main points:

- Countries of origin: The calculation tool was updated to account for the new countries of origin, both European (e.g. Germany, Italy, Ireland, Poland, etc.) and non-European (e.g. Brazil, USA, Thailand, etc.).
- Soybean meal: A new feed ingredient was added to the tool in order to account for the multiple possible origins of soybean meal. The second version of the tool includes two columns: one for Brazilian soy and one for 'other soy' (either from the EU or the USA).

## Chapter 5. Results

The pesticide use levels of the products to assess are presented below, per product category. Organic products present a null result by definition and are thus not included in the result sections below.

#### 5.1. Beef

Ten non-organic beef products were assessed. Their results are presented in Table 7 and Figure 3. The average value for this group is 1,99 g a.i./kg edible product, which is above the threshold value.

The four Swedish products are situated below the threshold. The Swedish *Sigill Climate certified* beef presents the lowest overall impact. This can be explained by the absence of Brazilian soybean meal in this system (which is replaced by US soybean meal with a lower impact).

Finnish beef is the only non-Swedish product which is below the threshold. Beef products from all other assessed countries of origin are above the threshold. German beef presents a particularly high value due to high pesticides uses in barley and wheat. USA beef presents the highest value of all assessed products, which can be explained by the fact that USA feed crops appear to be associated with higher pesticides uses than in the EU, and the fact that all animals in the system are included in the assessment (Figure 3).

| Country | Product name                             | PPP TOTAL<br>(g a.i./kg edible product) |
|---------|------------------------------------------|-----------------------------------------|
| Finland | Finland conventional                     | 1,29                                    |
| Germany | Germany conventional                     | 3,54                                    |
| Ireland | Ireland conventional                     | 1,91                                    |
| Poland  | Poland conventional                      | 2,14                                    |
| Sweden  | Swedish Sigill certified                 | 1,26                                    |
|         | Swedish Sigill Klimatcertifierad         | 1,01                                    |
|         | Swedish certified Sigill natural pasture | 1,26                                    |
|         | Sweden - animals indoor                  | 1,29                                    |
|         | Sweden - animals on (some) pasture       | 1,26                                    |
| USA     | USA conventional                         | 4,90                                    |
| Average |                                          | 1,99                                    |

Table 7. Total pesticides use (g a.i./kg edible product) associated with non-organic beef products.



Figure 3. Total pesticides use (g a.i./kg edible product) associated with non-organic beef.

#### 5.2. Broiler

Eleven non-organic broiler products were assessed. Their results are presented in Table 8 and Figure 4. The average value for this group is 2,16 g a.i./kg edible product, which is above the threshold.

In fact, all assessed products present a level of pesticides use which is above the threshold. The highest one is observed for Conventional Brazilian broiler (3,90 g a.i./kg edible product). This is explained by a very high share of soybean meal in its feed (nearly 40% DM).

The French *Label Rouge Auvergne* is the only system which does not use Brazilian soy. Instead, the certification requires the use of French soy, which has a lower impact. This allows to compensate a high FCR value (due to longer lifecycles of the animals in this system).

Swedish systems are just above the threshold They present the lowest results.

In general, the overall pesticides impact of broiler systems is greatly driven by the use of soybean meal (see Figure 4).

| Country     | Product name                     | PPP TOTAL<br>(g a.i./kg edible product) |
|-------------|----------------------------------|-----------------------------------------|
| Belgium     | Belgium conventional             | 2,40                                    |
| Brazil      | Brazil conventional              | 3,90                                    |
| Denmark     | Denmark conventional             | 1,81                                    |
| France      | France conventional              | 2,47                                    |
|             | French Label Rouge Auvergne      | 1,81                                    |
| Germany     | Germany conventional             | 2,16                                    |
| Netherlands | Netherlands conventional         | 2,27                                    |
| Poland      | Poland conventional              | 2,22                                    |
| Sweden      | Sweden conventional              | 1,57                                    |
|             | Swedish Sigill climate certified | 1,57                                    |
|             | Swedish Sigill certified         | 1,57                                    |
| Average     |                                  | 2,16                                    |

Table 8. Total pesticides use (g a.i./kg edible product) associated with non-organic broiler products.



Figure 4. Total pesticides use (g a.i./kg edible product) associated with non-organic broiler in different countries.

#### 5.3. Cheese

Eleven non-organic cheese products were assessed. Their results are presented in Table 9 and Figure 5. The average value for this group is 1,74 g a.i./kg edible product, which is above the threshold.

Within cheese products, there is a difference between hard cheese and soft cheese as the former is assumed to require more milk than the latter (10 L milk/kg cheese vs. 6,5L milk/kg cheese). Within countries, differences between products are explained by this assumption as feeding practices (feed conversion ratio and feed composition) are considered to be the same.

Seven products are situated above the threshold. German cheese (both hard and soft) presents the highest PPP use of all products, followed by Italian mozzarella and Danish hard cheese. This can be explained by relatively important shares of soybean meal in the feed composition (4-6% of DM). Dutch hard cheese and Swedish hard cheese (conventional and *Sigill certified*) are just above the threshold value (1,61 g a.i./kg edible product). These products contain less soybean meal (2-3% DM).

Four products are situated below the threshold. Danish soft cheese and Swedish halloumi have the same feeding practices as their conventional hard cheese equivalents but they benefit from the fact that they requires less milk than hard cheese. French goat cheese does not require much soybean meal, leading to a low impact. Finally, Swedish *Sigill climate certified* hard cheese benefits from the fact that it cannot use Brazilian soy but uses USA soy instead, thereby limiting its impact.

| Country     | Product name                                         | PPP TOTAL<br>(g a.i./kg edible product) |
|-------------|------------------------------------------------------|-----------------------------------------|
| Denmark     | Hard cheese (cow) – Denmark conventional             | 1,76                                    |
|             | White salad cheese (cow) – Denmark conventional      | 1,14                                    |
| France      | Chevre (goat) – France conventional                  | 1,05                                    |
| Germany     | Hard cheese (cow) – Germany conventional             | 3,54                                    |
|             | White salad cheese (cow) – Germany conventional      | 2,30                                    |
| Italy       | Mozzarella (cow) – Italy conventional                | 2,15                                    |
| Netherlands | Hard cheese (cow) – Netherlands conventional         | 1,61                                    |
| Sweden      | Hard cheese (cow) – Sweden conventional              | 1,61                                    |
|             | Hard cheese (cow) – Swedish Sigill climate certified | 1,16                                    |
|             | Hard cheese (cow) – Swedish Sigill certified         | 1,61                                    |
|             | "Halloumi" (Cow) – Sweden conventional               | 1,24                                    |
| Average     |                                                      | 1,74                                    |

| Table 9. | Total pesticides us | e (g a.i./k§ | g edible product) | associated with no | n-organic cheese prod | lucts. |
|----------|---------------------|--------------|-------------------|--------------------|-----------------------|--------|
|----------|---------------------|--------------|-------------------|--------------------|-----------------------|--------|





#### 5.4. Eggs

Five non-organic egg products were assessed. Their results are presented in Figure 6 and Table 10. The average value for this group is 1,31 g a.i./kg edible product, which is below the threshold.

The Polish conventional system is the only one which presents an impact level above the threshold value (2,29 g a.i./kg edible product), which can be explained by a high feed conversion ratio compared to other egg products. Swedish conventional eggs present the lowest result among assessed products (0,77 g a.i./kg edible product).

As for broilers, the overall impact of egg systems is greatly driven by the use of soybean meal (see Figure 6).

| Table 10 T  | otal ne | esticides | use (g | ai/k       | edible  | product) | associated | with  | non-organi | - egg | products  |
|-------------|---------|-----------|--------|------------|---------|----------|------------|-------|------------|-------|-----------|
| Table 10. 1 | otai po | esticides | use (g | , a.i./ Kj | geuible | product) | associated | WILLI | non-organn | - egg | products. |

| Country     | Product name             | PPP TOTAL<br>(g a.i./kg edible product) |
|-------------|--------------------------|-----------------------------------------|
| Denmark     | Denmark conventional     | 1,03                                    |
| Finland     | Finland conventional     | 1,06                                    |
| Netherlands | Netherlands conventional | 1,38                                    |
| Poland      | Poland conventional      | 2,29                                    |
| Sweden      | Sweden conventional      | 0,77                                    |
| Average     |                          | 1,31                                    |





#### 5.5. Lamb

One non-organic lamb product was assessed. Its result is presented in Table 11 and Figure 7.

The available data on feeding practices for conventional Swedish lamb is not sufficient to allow for a detailed assessment of its pesticides use. Hence, results are expressed as a range rather than as a specific value: 1,00 g a.i./kg product is a low-end estimate which does not account for the use of pesticides on grasslands (grazed pasture). 2,15 g a.i./kg product is a high-end estimate which assumes that all the grasslands available to lambs is actually grazed and treated with pesticides. In practice, the pesticides use is likely to be closer to the low-end estimate as the majority of Swedish lamb grazes on non-treated grasslands according to experts.

| Table 11. | Total pesticides us | se (g a.i./kg | g edible product) | associated with non | -organic lamb | products |
|-----------|---------------------|---------------|-------------------|---------------------|---------------|----------|
|-----------|---------------------|---------------|-------------------|---------------------|---------------|----------|

|                   | D. 1.                                              | PPP TOTAL<br>(g a.i./kg edible product)             |  |
|-------------------|----------------------------------------------------|-----------------------------------------------------|--|
| Country           | Product name                                       |                                                     |  |
| Sweden            | Sweden conventional*                               | 1,00-2,15                                           |  |
| Note *The availab | le data does not allow for a detailed assessment ( | of conventional Swedish lamb 1 00 g a i /kg product |  |

Note: \*The available data does not allow for a detailed assessment of conventional Swedish lamb. 1,00 g a.i./kg product is a low-end estimate which does not account for grasslands and grazed pasture. 2,15 g a.i./kg product is a high-end estimate which assumes that all the grasslands available to lambs is actually grazed and treated with pesticides.



Figure 7. Total pesticides use (g a.i./kg edible product) associated with non-organic Swedish lamb.

Note: The figure presented in this chart (1,00 g a.i./kg edible product) is a low-end estimate which does not account for the use of pesticides on grasslands (grazed pasture). 2,15 g a.i./kg product is a high-end estimate which assumes that all the grasslands available to lambs is actually grazed and treated with pesticides.

#### 5.6. Plant-based products

Four non-organic plant-based products were assessed. Their results are presented in Table 12 and Figure 8. The average value for this group is 0,33 g a.i./kg edible product, which is well below the threshold.

In this group, each product is assumed to be constituted of one single "feed ingredient": olea-/proteaginous beans for legumes conventional legumes, wheat for *Quorn* and *Seitan* and soybeans for conventional tofu. For all products (including soybean-based products), a European origin is assumed.

Of the five assessed non-organic products, tofu presents the lowest impact level (0,14 g a.i./kg edible product) while Quorn presents the highest impact level (0,47 g a.i./kg edible product).

| Country      | Des last as as       | PPP TOTAL                  |
|--------------|----------------------|----------------------------|
| Country      | Product name         | (g a.i./kg edible product) |
| General (EU) | Legumes conventional | 0,35                       |
|              | Quorn conventional   | 0,47                       |
|              | Seitan conventional  | 0,38                       |
|              | Tofu/Tempeh (soy)    | 0,14                       |
| Average      |                      | 0,33                       |

Table 12. Total pesticides use (g a.i./kg edible product) associated with non-organic plant-based products.



Figure 8. Total pesticides use (g a.i./kg edible product) associated with non-organic plant-based products

#### 5.7. Pork

Ten non-organic pork products were assessed. Their results are presented in Table 13 and Figure 9. The average value for this group is 2,14 g a.i./kg edible product, which is above the threshold.

Of the assessed non-organic products, only one presents an impact level which is just below the threshold: Swedish climate certified pork (1,48 g a.i./kg edible product respectively). This is due to the fact that its feed ration contains slightly less soybean meal (maximum 5% is allowed by the certification) compared to other Swedish pork systems.

All other pork products present impact levels which are above the threshold, although Swedish conventional and Sigill-certified pork are very close (1,55 g a.i./kg edible product). Finnish conventional pork presents the highest impact level (3,70 g a.i./kg edible product), which is explained by high shares of soybean meal.

| Country     | Product name                     | PPP TOTAL                  |
|-------------|----------------------------------|----------------------------|
|             |                                  | (g a.i./kg edible product) |
| Denmark     | Denmark conventional             | 1,69                       |
| Finland     | Finland conventional             | 3,70                       |
| Germany     | Germany conventional             | 1,97                       |
| Italy       | Italy conventional               | 2,95                       |
| Netherlands | Netherlands conventional         | 2,49                       |
| Poland      | Poland conventional              | 1,95                       |
| Spain       | Spain conventional               | 2,08                       |
| Sweden      | Sweden conventional              | 1,55                       |
|             | Swedish Sigill climate certified | 1,48                       |
|             | Swedish Sigill certified         | 1,55                       |
| Average     |                                  | 2,14                       |

| Table 13. T | 'otal pesticides use | (g a.i./kg | g edible product) | associated with | organic and no | on-organic plant- | -based products. |
|-------------|----------------------|------------|-------------------|-----------------|----------------|-------------------|------------------|
|-------------|----------------------|------------|-------------------|-----------------|----------------|-------------------|------------------|



Figure 9. Total pesticides use (g a.i./kg edible product) associated with non-organic pork in different countries.

#### Bibliography

Antier, C., Petel, T., & Baret, P. (2018). Creating the conditions for a transition towards more sustainable farming systems: A participatory approach with prospective scenarios. *IFSA Conference. Theme 5 - Sustainable Agrifood Systems, Value Chains and Power Structures.* 

BFA. (2020a). Durabilité-Soja durable. Belgian Feed Association (BFA).

BFA. (2020b). Rapport statistique de l'industrie belge de l'alimentation animale 2019. Belgian Feed Association (BFA).

Cederberg, C., Sonesson, U., Henriksson, M., Sund, V., & Davis, J. (2009). Greenhouse gas emissions from Swedish production of meat, milk and eggs 1990 and 2005. SIK - Institutet för livsmedel och bioteknik.

CELAGRI. (2020). L'alimentation des bovins. Cellule d'information agriculture (CELAGRI).

Chambres d'Agriculture. (2013). Valorisation de viande et des produis transformés à base de porcs. Découpe pour la vente directe.

Clune, S., Crossin, E., & Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. *Journal of Cleaner Production*, *140*, 766–783. https://doi.org/10.1016/j.jclepro.2016.04.082

Cuvelier, C., & Dufrasne, I. (2015). L'alimentation de la vache laitiere—Aliments, calculs de ration, indicateurs d'évaluation des déséquilibres de la ration et pathologies d'origine nutritionnelle (Livret de l'agriculture, p. 105).

Dalgaard, R., Schimdt, J. H., & Cenian, K. (2016). Life cycle assessment of milk—National baselines for Germany, Denmark, Sweden and United Kingdom 1990 and 2012. Arla Foods. https://lcanet.com/files/Dalgaard-et-al-2016-Life-cycle-assessment-of-milk-National-baselines-for-Germany-Denmark-Sweden-and-United-Kingdom-2012.pdf

Damaziak, K., Riedel, J., Gozdowski, D., Niemiec, J., Siennicka, A., & Róg, D. (2017). Productive performance and egg quality of laying hens fed diets supplemented with garlic and onion extracts. *Journal of Applied Poultry Research*, *26*(3), 337–349. https://doi.org/10.3382/japr/pfx001

Dekker, S. E. M., de Boer, I. J. M., Vermeij, I., Aarninck, A. J. A., & Groot Koerkamp, P. W. G. (2011). Ecological and economic evaluation of Dutch egg production systems. *Livestock Science 139*, 109–121.

ERM, & UGent. (2011). Toepassen van de Carbon Footprint methodologie op Vlaamse veehouderijproducten. Environmental Resources Management (ERM) & Universiteit Gent (UGent).

Ertl, P., Steinwidder, A., Schönauer, M., Krimberger, K., Knaus, W., & Zollitsch, W. (2016). Net food production of different livestock: A national analysis for Austria including relative occupation of different land categories / Netto-Lebensmittelproduktion der Nutztierhaltung: Eine nationale Analyse für Österreich inklusive relativer Flächenbeanspruchung. *Die Bodenkultur: Journal of Land Management, Food and Environment, 67*(2), 91–103. https://doi.org/10.1515/boku-2016-0009

Eurostat. (2021a). Statistics on crop production in EU standard humidity. https://ec.europa.eu/eurostat/databrowser/view/APRO\_CPSH1\_\_custom\_756089/default/table ?lang=en

Eurostat. (2021b). Statistics on pesticide use in agriculture. https://ec.europa.eu/eurostat/databrowser/view/aei\_pestuse/default/table?lang=en

FAOSTAT. (2021). *Statistics on soy yield in USA*. Food and Agriculture Organisation of the United Nations (FAO).

FEFAC. (2019). Annual Report 2018-2019. The European Feed Manufacturers' Federation (FEFAC).

Halberg, N., van der Werf, H. M. G., Basset-Mens, C., Dalgaard, R., & de Boer, I. J. M. (2005). Environmental assessment tools for the evaluation and improvement of European livestock production systems. *Livestock Production Science*, *96*(1), 33–50. https://doi.org/10.1016/j.livprodsci.2005.05.013

Hou, Y., Bai, Z., Leschen, J. P., Staritsky, I., Sikirica, N., Ma, L., Velthof, G., & Oenema, O. (2016). Feed use and nitrogen excretion of livestock in EU-27. *Agriculture, Ecosystems and Environment, 218,* 232–244.

IDELE. (2015). Observatoire de l'alimentation des chèvres laitières françaises. Institut de l'élevage. https://idele.fr/?eID=cmis\_download&oID=workspace://SpacesStore/2b91bf50-f754-491d-bc76-32093b4aafc9

IDELE, & CNE. (2019). Les chiffres clés du GEB. Bovins 2019. Productions lait et viande. Institut de l'élevage (IDELE) & Confédération Nationale de l'Elevage (CNE).

IFIP. (2016). *La production de porcs Label Rouge, une perspective dans le contexte 2015 ?* Institut du porc (IFIP).

ITAVI. (2015). Performances technques et coûts de production en volailles de chair, poulettes et poules pondeuses. Institut Technique de l'Aviculture (ITAVI).

Koch, P., & Salou, T. (2020). Agribalyse: Rapport méthodologique, Volet Agriculture. Agribalyse V3.0. ADEME.

Lamnatou, Chr., Ezcurra-Ciaurriz, X., Chemisana, D., & Plà-Aragonés, L. M. (2016). Environmental assessment of a pork-production system in North-East of Spain focusing on lifecycle swine nutrition. *Journal of Cleaner Production, 137*, 105–115. https://doi.org/10.1016/j.jclepro.2016.07.051

Loveday, D., & Ferguson, K. (n.d.). Rob Holland, Director Center for Profitable Agriculture. 12.

Malagutti, L., Colombini, S., Pirondini, M., Crovetto, G. M., Rapetti, L., & Galassi, G. (2012). Effects of phytase on growth and slaughter performance, digestibility and nitrogen and mineral balance in heavy pigs. *Italian Journal of Animal Science*, 11(4), e70. https://doi.org/10.4081/ijas.2012.e70

Meyer, D. E., & Cederberg, C. (2010). *Pesticide use and glyphosateresistant weeds: A case study of Brazilian soybean production*. SIK - Institutet för livsmedel och bioteknik.

Moberg, E., Walker Andersson, M., Säll, S., Hansson, P.-A., & Röös, E. (2019). Determining the climate impact of food for use in a climate tax—Design of a consistent and transparent model. *The International Journal of Life Cycle Assessment, 24*(9), 1715–1728. https://doi.org/10.1007/s11367-019-01597-8

Mogensen, L., Kristensen, T., Nielsen, N. I., Spleth, P., Henriksson, M., Swensson, C., Hessle, A., & Vestergaard, M. (2015). Greenhouse gas emissions from beef production systems in Denmark and Sweden. *Livestock Science*, *174*, 126–143. https://doi.org/10.1016/j.livsci.2015.01.021

Nguyen, T. L., Hermansen, J., & Mogensen, L. (2010). Fossil energy and GHG saving potentials of pig farming in the EU. *Energy Policy*, *38*, 2561–2571.

Palmieri, N., Forleo, M. B., & Salimei, E. (2017). Environmental impacts of a dairy cheese chain including whey feeding: An Italian case study. *Journal of Cleaner Production, 140,* 881–889. https://doi.org/10.1016/j.jclepro.2016.06.185

Perry, E. D., Ciliberto, F., Hennessy, D. A., & Moschini, G. (2016). Genetically engineered crops and pesticide use in U.S. maize and soybeans. *Science Advances, 2*(8). https://doi.org/10.1126/sciadv.1600850

Pollak, H. (2020). Pesticide footprint of Brazilian soybeans. A temporal study of pesticide use and impacts in the Brazilian soybean cultivation. Master's thesis - Chalmers University of Technology.

Prudêncio da Silva, V., van der Werf, H. M. G., Soares, S. R., & Corson, M. S. (2014). Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. *Journal of Environmental Management, 133, 222–231.* https://doi.org/10.1016/j.jenvman.2013.12.011 Prudêncio da Silva, V., van der Werf, H. M. G., Spies, A., & Soares, S. R. (2010). Variability inenvironmental impacts of Brazilian soybean according to crop production and transport scenarios.JournalofEnvironmentalManagement,91(9),1831–1839.https://doi.org/10.1016/j.jenvman.2010.04.001

Quorn. (2018). Sustainable future of food – production of first class protein alternative for a balanced diet. Quorn.

https://assets.ctfassets.net/uexfe9h31g3m/71sdVt68rSUyy0KuOW2Ky0/785a424ffd50dc187f25 81b21813c79a/Sustainable\_future\_of\_food.pdf

Riera, A., Antier, C., & Baret, P. (2019). Study on livestock scenarios for Belgium in 2050. https://sytra.be/wp-

content/uploads/2020/04/UCLouvain\_Study\_Livestock\_Belgium\_v191028.pdf

Riera, A., Antier, C., de Clippelle, A., & Baret, P. (2021). A study on the use of chemical pesticides for WWF's meat guides: Methodological and data update. Sytra - Earth and Life Institute - UCLouvain.

Röös, E., Ekelund, L., & Tjärnemo, H. (2014a). Communicating the environmental impact of meat production: Challenges in the development of a Swedish meat guide. *Journal of Cleaner Production*, *73*, 154–164. https://doi.org/10.1016/j.jclepro.2013.10.037

Röös, E., Ekelund, L., & Tjärnemo, H. (2014b). Communicating the environmental impact of meat production: Challenges in the development of a Swedish meat guide. *Journal of Cleaner Production*, *73*, 154–164. https://doi.org/10.1016/j.jclepro.2013.10.037

Rotz, C. A., Asem-Hiablie, S., Place, S., & Thoma, G. (2019). Environmental footprints of beef cattle production in the United States. *Agricultural Systems*, *169*, 1–13. https://doi.org/10.1016/j.agsy.2018.11.005

Rougher, C., Elfrink, E., Tjek Lap, & Balkema, A. (2015). LCA of Dutch pork, assessment of three pork production systems in the Netherlands. https://doi.org/10.13140/RG.2.1.4933.4644

Thomassen, M. A., van Calker, K. J., Smits, M. C. J., Iepema, G. L., & de Boer, I. J. M. (2008). Life cycle assessment of conventional and organic milk production in the Netherlands. *Agricultural Systems*, *96*(1), 95–107. https://doi.org/10.1016/j.agsy.2007.06.001

USDA. (2020). Crop Production 2019 Summary. Crop Production, 124.

van Grinsven, H. J. M., van Eerdt, M. M., Westhoek, H., & Kruitwagen, S. (2019). Benchmarking Eco-Efficiency and Footprints of Dutch Agriculture in European Context and Implications for Policies for Climate and Environment. *Frontiers in Sustainable Food Systems, 3,* 13. https://doi.org/10.3389/fsufs.2019.00013

Viaene, J. (2012). *Overzicht van de Belgische pluimve- en konijnenhouderij in 2010-2011*. Verbond voor Pluimvee, Eieren en Konijnen (VEPEK).

Wageningen UR. (2013). Kwantitatieve Informatie Veehouderij (KWIN-V) 2013-2014 (p. 418). Wagenin UR, Livestock Research.

Wallman, M., Cederberg, C., & Sonesson, U. (2011). *Life cycle assessment of Swedish lamb production: Version 2.* SIK - Institutet för livsmedel och bioteknik.

Wieben, C. M. (2020). Estimated Annual Agricultural Pesticide Use by Major Crop or Crop Group for States of the Conterminous United States, 1992-2017 (ver. 2.0, May 2020) [Data set]. U.S. Geological Survey. https://doi.org/10.5066/P9HHG3CT

Winkler, T., Schopf, K., Aschemann, R., & Winiwarter, W. (2016). From farm to fork – A life cycle assessment of fresh Austrian pork. *Journal of Cleaner Production*, *116*, 80–89. https://doi.org/10.1016/j.jclepro.2016.01.005

WWF Austria. (2018). WWF Austria's Meat Guide. WWF.

WWF Finland. (2016). WWF Finland's Meat Guide. WWF.

WWF France. (2019). Viande-Manger moins, manger mieux. WWF, CIWF France, Quantis.

Xue, L., Prass, N., Gollnow, S., Davis, J., Scherhaufer, S., Östergren, K., Cheng, S., & Liu, G. (2019). Efficiency and Carbon Footprint of the German Meat Supply Chain. *Environmental Science & Technology*, *53*(9), 5133–5142. https://doi.org/10.1021/acs.est.8b06079

Zira, S., Rydhmer, L., Ivarsson, E., Hoffmann, R., & Röös, E. (2021). A life cycle sustainability assessment of organic and conventional pork supply chains in Sweden. *Sustainable Production and Consumption, 28,* 21–38. https://doi.org/10.1016/j.spc.2021.03.028

## Appendix 1 – Methodology

#### **Necessary inputs - Feeding practices**

This section further details each of the six inputs involved in the calculation.

Input 1 - Feed conversion ratio (FCR)

Reference unit for calculations: kg feed (DM)/kg edible product.

#### Definition

The feed conversion ratio represents the amount of feed which is necessary to produce one unit of animal output. As such, it can be seen as a measure of the efficiency with which animals convert animal feed into a desired output.

#### Possible units

Although a feed conversion ratio always reflects the amount of feed consumed per amount of output produced, in practice, it can take several forms and be expressed in different units. This depends on two factors:

- (1) How the amounts of feed are expressed:
  - kg feed (humid weight)
  - kg feed DM (dry weight)
- (2) How the amounts of output are expressed:
  - kg live weight
  - kg carcass weight
  - kg edible product

As a result, there are six combinations of units in which the FCR can be expressed. Nevertheless, in order to facilitate the calculations and allow for a comparison between products, all FCR values were expressed in one common unit during the calculations: kg feed (DM)/kg edible product.

FCR values found during the data collection process which were expressed in the five other units were converted to the correct unit.

#### Inclusion of non-productive animals and allocation of impacts

Apart from the FCR unit, the FCR value can also vary depending on the scope of animals which are included in the assessment. Indeed, some FCR values only consider the amounts of feed consumed by the productive animals. Non-productive animals, such as sows or mother hens, which do not lead to a direct production of output are then not considered in the assessment although they also represent an amount of feed consumed and thus have an impact in terms of pesticides use. In our assessment, non-productive animals were included in the calculations in order to reflect the total consumption of feed and pesticides associated with animal productions. FCR values which initially did not include non-productive animals were corrected.

For bovine systems, this issue is not straightforward as these can lead to two products: milk (and dairy) and beef. Impacts must thus be allocated to one product or to another.

For dairy systems, it was assumed that all consumed feed was affected to the production of milk (or butter or cheese). For cheese, 10 L of milk were assumed necessary for the production of 1 kg. For butter, the ratio was 20 L of milk for 1 kg. These amounts are consistent with previous Meat Guides (Röös et al., 2014a; WWF Finland, 2016).

For beef, only the feed consumed by the productive animal was considered. E.g., in the case of beef production from young bulls, only the feed consumed by the bulls was considered. The consumption of feed by the suckler cows was not taken into account. As a consequence, in the case of beef production from culled suckler cows, only their feed consumption was taken into account.

#### Extensive vs. Intensive

It is worthwhile to note that more extensive production systems (e.g., organic) tend to have higher FCR values. Indeed, as animals in these systems generally live longer lives, they are associated with a greater feed consumption for a similar output level. In comparison, animals in intensive systems live shorter lives, consume less feed and are thus more efficient from that perspective.

As a result, as noted in the French Meat Guide (WWF France, 2019), working with an outputbased functional unit (in this case *per kg edible product*; see section 0) penalises less productive/more extensive systems. Area-based functional units (*per ha*) on the other hand tend to favour more extensive systems, which present lower impacts per unit of area compared with more intensive systems, as noted for example by Halberg et al. (2005). The choice of one functional unit over the other is thus likely to influence the final results when comparing farms and production systems.

In addition, a comparison of production systems should not be based on one single metric but rather on a comprehensive set of indicators covering a diversity of environmental (and socioeconomic) themes such as climate change, biodiversity, animal welfare, etc. (as is done in the existing WWF Meat Guides).

#### Input 2 - Feed compositions

#### Reference unit for calculations: % of feed ingredient in total feed, expressed in DM contents.

#### Definition

In order to maintain an acceptable level of complexity in the model, the number of feed ingredients considered in the context of this study was limited to a list of thirteen major ingredients (Table

14). This list was established based on different sources, including national and international animal feed associations (BFA, 2020b; FEFAC, 2019), scientific articles (Hou et al., 2016) as well as technical reports (CELAGRI, 2020; Cuvelier & Dufrasne, 2015).

For each animal product, a specific feed composition was identified, with varying shares of the thirteen ingredients.

#### Possible units

When considering the composition of a particular feed, it is important to account for the dry matter content (DM) of the different ingredients. Indeed, feed ingredients have varying DM contents. As a consequence, the relative shares of feed ingredients will vary if the feed composition is expressed in humid or in dry terms. This is particularly the case for forage feed ingredients which have lower dry matter contents compared to concentrate feed ingredients, for which DM contents are close to 90%.

#### **Transformation ratios**

Additionally, for some feed ingredients a transformation ratio should be accounted for. Indeed, some ingredients are the result of a prior transformation. As such, a greater amount of raw material, or primary crop, is necessary to produce one unit of feed ingredient. In the case of soybean meal, 1,27 kg of soybeans are necessary to produce 1 kg of soybean meal (BFA, 2020a).

Due to limited data availability, it must be noted that the current version of the model does not account for these transformation factors. Indeed, only the previously-mentioned ratio for soybean meal could be found in the literature. LCA databases might contain additional information for other ingredients such as rapeseed meal.

#### Origin of feed ingredients

It must be noted that in the context of this study, all feed ingredients were assumed to be produced nationally, except for soybean meal which was considered to be imported from Brazil. Complementary considerations and calculations regarding the origin of soy are provided in the report (see section 0).

Table 14. List of thirteen feed ingredients included in the model.

| Ingredient category      | Ingredients              |
|--------------------------|--------------------------|
| Forage                   | Grazed grass             |
|                          | Grass silage/hay         |
|                          | Maize silage             |
|                          | Other forage             |
| Cereals                  | Wheat                    |
|                          | Maize                    |
|                          | Barley                   |
| Protein-rich ingredients | Olea-/proteaginous beans |
|                          | Soybean meal – Brazil    |
|                          | Soybean meal – Other     |
|                          | Sunflower meal           |
|                          | Rapeseed meal            |
| Others                   | Sugarbeet pulp           |
|                          | Vitamins, minerals, etc. |

Sources: Based on BFA (2020b); CELAGRI (2020); Cuvelier & Dufrasne (2015); FEFAC (2019); Hou et al. (2016).

#### Input 3 - Slaughter and carcass yields

**Reference units for calculations:** kg edible product.

As mentioned earlier, in order to facilitate the calculations and comparisons, the feed conversion values of all products were expressed per kilogram of edible product, which constitutes the functional unit.

However, the initial FCR values found during the data collection process were not always expressed in the desired functional unit as they were sometimes expressed per kilogram live weight or carcass weight. Depending on the initial FCR unit, corrective factors corresponding to the slaughter and carcass yields were applied (Table 15).

Table 15. Corrective factors (slaughter and carcass yields) applied to initial FCR values according to the initial FCR functional unit.

| Initial FCR functional unit | Necessary corrective factor(s) | Unit of conversion factor(s)  |
|-----------------------------|--------------------------------|-------------------------------|
| kg edible product           | None                           | -                             |
| kg carcass weight           | Carcass yield                  | kg edible product/kg carcass  |
| kg live weight              | Slaughter yield                | kg carcass/kg live weight     |
|                             | Carcass yield                  | kg edible product/ kg carcass |

#### Necessary inputs - Pesticides use of feed crops

#### Input 4 – Total pesticides use of feed crops

Reference units for calculations: kg active ingredient (kg a.i.).

For each country, the total use of pesticides on the total area of a specific crop is necessary for the calculations. This constitutes the starting point to characterise the pesticides use of feed crops.

#### *Input 5 – Areas of feed crops*

#### Reference units for calculations: ha.

As a second step, combining the total use of pesticides on a specific crop (i.e., input 4) with the total area of that crop in a considered country allows to calculate the relative use of pesticides per unit of area, which is expressed in kg a.i./ha.

#### Input 6 – Yields of feed crops

#### Reference units for calculations: kg/ha.

Finally, combining the relative use of pesticides per unit of area (i.e., the result of inputs 4 and 5) with the yields of each crop allows to calculate the relative use of pesticides per unit of output, which is expressed in g a.i./kg feed crop.

This value can either be expressed in humid or dry matter terms. For the calculations, the DM value was used.

#### Differentiation of data

As seen above, calculating the relative pesticides use of animal products relies on six categories of input data. This data can be differentiated on three levels:

- 1. **Product-level**, i.e., differentiating between vegetal (e.g., barley, wheat, soy, etc.) or animal (e.g., beef, eggs, milk, etc.) products.
- 2. Country-level, i.e., differentiating between different countries. In this case, included countries are Sweden, Finland, Austria, France, Belgium and Estonia.
- 3. **Production system level**, i.e., differentiating between different production systems (e.g., conventional, organic, certified, etc.).

For this assessment, Figure 10 shows the desired level of differentiation for each of the six inputs. *Pesticides use of feed crops* 

Based on data availability (see Chapter 3), the pesticides use of feed crops is differentiated at the crop and country levels but not at the production system levels (i.e without differentiating

between various production systems<sup>4</sup>). This means that all conventional<sup>5</sup> feed ingredients were assumed to be grown with similar amounts of pesticides (in one specific country). This is partly because the available data does not allow for such a differentiation. Furthermore, in practice, when buying animal feed, it is not easy to trace the feed ingredients to production systems, except for organic systems. For organic systems and feed ingredients, the pesticides use was considered null given that the use of synthetic pesticides is forbidden (or severely restricted) in organic agriculture.

#### Feeding practices

On the one hand, similarly to the pesticides use of feed crops, slaughter and carcass yields were differentiated at the product and country levels but not at the production system levels. Indeed, in accordance with experts and based on data availability, it was assumed that slaughter and carcass yields for one product and in one country did not significantly differ across production systems.

On the other hand, FCR and feed compositions were as much as possible differentiated at the production system-level (*conventional – differentiated – organic*), i.e., with a specific value for each assessed product. However, as specific data was not always available for every product, generic values were sometimes used in the calculations. These generic values either related to a country (i.e., country-specific but not production system-specific) or to a production system (i.e., production system-specific but not country-specific).



Figure 10. Desired level of differentiation of six inputs necessary to calculate the relative pesticides use of animal products.

<sup>&</sup>lt;sup>4</sup> Beside the distinction between organic and conventional production systems, more precise typologies of production systems show that the level of pesticide use per kg of crop may vary (see for example (Antier et al., 2018).
<sup>5</sup> i.e., non-organic.

## Appendix 2 – Input data for feeding practices and pesticides uses

#### Feed conversion ratios

#### Feed consumption of non-productive animals

Table 16. Generic feed consumption values of non-productive animals per product category.

| Product     | Source                                                     | Feed consumption by<br>non-productive animals |
|-------------|------------------------------------------------------------|-----------------------------------------------|
|             |                                                            | kg feed (DM)/kg product                       |
| Broiler     | Based on ITAVI (2015); Viaene (2012); Wageningen UR (2013) | 0,16                                          |
| Eggs        | Based on ITAVI (2015); Viaene (2012); Wageningen UR (2013) | 0,28                                          |
| Pork        | IFIP (2016)                                                | 0,42                                          |
| Milk        | Personal communication with BE expert (2018)               | 0,55                                          |
| Beef        | None considered in the calculations                        | 0,00                                          |
| Cheese      | Personal communication with BE expert (2018)               | 5,45                                          |
| Butter      | Personal communication with BE expert (2018)               | 10,91                                         |
| Plant-based | None                                                       | 0,00                                          |

Note: Results are expressed per kg live weight for boiler and pork and per kg edible product for all other categories (eggs, milk, cheese and butter).

#### Feed conversion ratios used in the calculations

Table 17. Values of FCR used in the calculations for the assessed products (continued on the following pages).

| Country | Product | Category       | Certification                            | Data type         | Source FCR                                                                              | Reference<br>FCR value | Reference FCR Unit             | Non-prod.<br>Animals? |
|---------|---------|----------------|------------------------------------------|-------------------|-----------------------------------------------------------------------------------------|------------------------|--------------------------------|-----------------------|
| Finland | Beef    | Conventional   | Finland                                  | Generic - country | WWF (2016) FI Meat Guide                                                                | 12,50                  | kg feed (DM)/kg edible product | Not included          |
| France  | Beef    | Conventional   | France                                   | Generic - system  | Based on Rabeux & Elias<br>(2015); Hubrecht et al.<br>(2013) and Buron et al.<br>(2018) | 6,20                   | kg feed (DM)/kg live weight    | Not included          |
| Germany | Beef    | Conventional   | Germany                                  | Generic - country | Moberg et al., (2019)                                                                   | 13,17                  | kg feed (DM)/kg carcass weight | Not included          |
| Ireland | Beef    | Conventional   | Ireland                                  | Generic - country | Moberg et al., (2019)                                                                   | 21,77                  | kg feed (DM)/kg carcass weight | Not included          |
| Poland  | Beef    | Conventional   | Poland                                   | Generic - country | Moberg et al., (2019)                                                                   | 13,17                  | kg feed (DM)/kg carcass weight | Not included          |
| Sweden  | Beef    | Conventional   | Sweden - animals indoor                  | Specific          | Moberg et al., (2019)                                                                   | 13,13                  | kg feed (DM)/kg carcass weight | Not included          |
| Sweden  | Beef    | Conventional   | Sweden -animals on<br>(some) pasture     | Specific          | Moberg et al., (2019)                                                                   | 10,15                  | kg feed (DM)/kg carcass weight | Not included          |
| Sweden  | Beef    | Differentiated | Swedish certified Sigill natural pasture | Specific          | Moberg et al., (2019)                                                                   | 10,15                  | kg feed (DM)/kg carcass weight | Not included          |
| Sweden  | Beef    | Differentiated | Swedish Sigill certified                 | Specific          | Moberg et al., (2019)                                                                   | 10,15                  | kg feed (DM)/kg carcass weight | Not included          |
| Sweden  | Beef    | Differentiated | Swedish Sigill<br>Klimatcertifierad      | Specific          | Moberg et al., (2019)                                                                   | 10,15                  | kg feed (DM)/kg carcass weight | Not included          |
| USA     | Beef    | Conventional   | USA                                      | Generic - country | Rotz et al., (2019)                                                                     | 22,30                  | kg feed (DM)/kg carcass weight | Included              |
| Belgium | Broiler | Conventional   | Belgium                                  | Specific          | ITAVI, (2015)                                                                           | 1,70                   | kg feed/kg live weight         | Not included          |
| Brazil  | Broiler | Conventional   | Brazil                                   | Generic - country | Prudêncio da Silva et al.,<br>(2014)                                                    | 1,86                   | kg feed/kg live weight         | Included              |

| Country     | Product | Category       | Certification                         | Data type         | Source FCR                  | Reference<br>FCR value | Reference FCR Unit             | Non-prod.<br>Animals? |
|-------------|---------|----------------|---------------------------------------|-------------------|-----------------------------|------------------------|--------------------------------|-----------------------|
| Denmark     | Broiler | Conventional   | Denmark                               | Specific          | Moberg et al., (2019)       | 3,00                   | kg feed/kg carcass weight      | Included              |
| Finland     | Broiler | Conventional   | Finland                               | Generic - country | WWF Finland, (2016)         | 3,00                   | kg feed/kg edible product      | Included              |
| France      | Broiler | Conventional   | France                                | Specific          | ITAVI, (2015)               | 1,70                   | kg feed/kg live weight         | Not included          |
| France      | Broiler | Differentiated | French Label Rouge                    | Specific          | ITAVI, (2015)               | 3,10                   | kg feed/kg live weight         | Not included          |
| Germany     | Broiler | Conventional   | Germany                               | Generic - country | van Grinsven et al., (2019) | 1,61                   | kg feed/kg live weight         | Not included          |
| Netherlands | Broiler | Conventional   | Netherlands                           | Generic - country | van Grinsven et al., (2019) | 1,65                   | kg feed/kg live weight         | Not included          |
| Poland      | Broiler | Conventional   | Poland                                | Generic - country | van Grinsven et al., (2019) | 1,65                   | kg feed/kg live weight         | Not included          |
| Sweden      | Broiler | Conventional   | Sweden                                | Generic - country | Moberg et al., (2019)       | 3,00                   | kg feed/kg carcass weight      | Included              |
| Sweden      | Broiler | Differentiated | Swedish climate certified             | Generic - country | Moberg et al., (2019)       | 3,00                   | kg feed/kg carcass weight      | Included              |
| Sweden      | Broiler | Differentiated | Swedish Sigill certified              | Generic - country | Moberg et al., (2019)       | 3,00                   | kg feed/kg carcass weight      | Included              |
| Sweden      | Broiler | Organic        | Sweden organic and KRAV               | Generic - country | Moberg et al., (2019)       | 3,00                   | kg feed/kg carcass weight      | Included              |
| Denmark     | Cheese  | Conventional   | Hard cheese (cow) -<br>Denmark        | Generic - country | Dalgaard et al., (2016)     | 10,50                  | kg feed (DM)/kg edible product | Included              |
| Denmark     | Cheese  | Conventional   | White salad cheese<br>(cow) - Denmark | Specific          | Dalgaard et al., (2016)     | 6,83                   | kg feed (DM)/kg edible product | Included              |
| Finland     | Cheese  | Conventional   | Hard cheese (cow) -<br>Finland        | Specific          | WWF Finland, (2016)         | 13,00                  | kg feed (DM)/kg edible product | Included              |
| France      | Cheese  | Conventional   | Chevre (goat) - France                | Specific          | IDELE, (2015)               | 7,90                   | kg feed (DM)/kg edible product | Included              |

| Country     | Product | Category       | Certification                                       | Data type         | Source FCR                  | Reference<br>FCR value | Reference FCR Unit             | Non-prod.<br>Animals? |
|-------------|---------|----------------|-----------------------------------------------------|-------------------|-----------------------------|------------------------|--------------------------------|-----------------------|
| Germany     | Cheese  | Conventional   | Hard cheese (cow) -<br>Germany                      | Generic - country | Dalgaard et al., (2016)     | 11,80                  | kg feed (DM)/kg edible product | Included              |
| Germany     | Cheese  | Conventional   | White salad cheese<br>(cow) - Germany               | Specific          | Dalgaard et al., (2016)     | 7,67                   | kg feed (DM)/kg edible product | Included              |
| Italy       | Cheese  | Conventional   | Mozzarella (cow) - Italy                            | Specific          | Palmieri et al., (2017)     | 7,62                   | kg feed (DM)/kg edible product | Included              |
| Netherlands | Cheese  | Conventional   | Hard cheese (cow) -<br>Netherlands                  | Generic - country | van Grinsven et al., (2019) | 11,53                  | kg feed (DM)/kg edible product | Included              |
| Sweden      | Cheese  | Conventional   | "Halloumi" (Cow) -<br>Sweden                        | Specific          | Moberg et al., (2019)       | 6,84                   | kg feed (DM)/kg edible product | Not included          |
| Sweden      | Cheese  | Conventional   | Hard cheese (cow) -<br>Sweden                       | Specific          | Moberg et al., (2019)       | 10,53                  | kg feed (DM)/kg edible product | Not included          |
| Sweden      | Cheese  | Differentiated | Hard cheese (cow) -<br>Swedish climate<br>certified | Specific          | Moberg et al., (2019)       | 10,53                  | kg feed (DM)/kg edible product | Not included          |
| Sweden      | Cheese  | Differentiated | Hard cheese (cow) -<br>Swedish Sigill certified     | Specific          | Moberg et al., (2019)       | 10,53                  | kg feed (DM)/kg edible product | Not included          |
| Denmark     | Eggs    | Conventional   | Denmark                                             | Generic - country | Röös et al., (2014)         | 2,60                   | kg feed/kg edible product      | Included              |
| Finland     | Eggs    | Conventional   | Finland                                             | Generic - country | WWF Finland, (2016)         | 2,10                   | kg feed/kg edible product      | Included              |
| Netherlands | Eggs    | Conventional   | Netherlands                                         | Generic - country | Dekker et al., (2011)       | 2,31                   | kg feed/kg edible product      | Not included          |
| Poland      | Eggs    | Conventional   | Poland                                              | Generic - country | Damaziak et al., (2017)     | 3,96                   | kg feed/kg edible product      | Not included          |
| Sweden      | Eggs    | Conventional   | Sweden                                              | Generic - country | Röös et al., (2014)         | 2,60                   | kg feed/kg edible product      | Included              |
| Sweden      | Eggs    | Organic        | Swedish organic and<br>KRAV                         | Generic - country | Röös et al., (2014)         | 2,60                   | kg feed/kg edible product      | Included              |

| Country     | Product         | Category     | Certification              | Data type         | Source FCR               | Reference<br>FCR value | Reference FCR Unit             | Non-prod.<br>Animals? |
|-------------|-----------------|--------------|----------------------------|-------------------|--------------------------|------------------------|--------------------------------|-----------------------|
| Sweden      | Lamb            | Conventional | Sweden                     | Specific          | Wallman et al., (2011)   | 18,48                  | kg feed (DM)/kg carcass weight | Included              |
| General     | Plant-<br>based | Conventional | Legumes conventional       | Specific          | WWF Austria, (2018)      | 1,00                   | kg feed/kg edible product      | Included              |
| General     | Plant-<br>based | Conventional | Quorn                      | Specific          | Quorn, (2018)            | 2,00                   | kg feed/kg edible product      | Included              |
| General     | Plant-<br>based | Conventional | Seitan                     | Specific          | WWF Austria, (2018)      | 1,62                   | kg feed/kg edible product      | Included              |
| General     | Plant-<br>based | Conventional | Soybeans                   | Specific          | WWF Austria, (2018)      | 1,00                   | kg feed/kg edible product      | Included              |
| General     | Plant-<br>based | Conventional | Tofu/Tempeh (soy)          | Specific          | WWF Austria, (2018)      | 0,40                   | kg feed/kg edible product      | Included              |
| General     | Plant-<br>based | Organic      | Seitan organic             | Specific          | WWF Austria, (2018)      | 1,62                   | kg feed/kg edible product      | Included              |
| General     | Plant-<br>based | Organic      | Soybeans organic           | Specific          | WWF Austria, (2018)      | 1,00                   | kg feed/kg edible product      | Included              |
| General     | Plant-<br>based | Organic      | Tofu/Soy/Tempeh<br>organic | Specific          | WWF Austria, (2018)      | 0,40                   | kg feed/kg edible product      | Included              |
| Denmark     | Pork            | Conventional | Denmark                    | Specific          | Moberg et al., (2019)    | 4,40                   | kg feed/kg carcass weight      | Included              |
| Finland     | Pork            | Conventional | Finland                    | Generic - country | Hou et al., (2016)       | 3,20                   | kg feed (DM)/kg live weight    | Included              |
| Germany     | Pork            | Conventional | Germany                    | Specific          | Moberg et al., (2019)    | 4,40                   | kg feed/kg carcass weight      | Included              |
| Italy       | Pork            | Conventional | Italy                      | Generic - country | Malagutti et al., (2012) | 3,05                   | kg feed (DM)/kg live weight    | Not included          |
| Netherlands | Pork            | Conventional | Netherlands                | Specific          | Rougher et al., (2015)   | 2,66                   | kg feed/kg carcass weight      | Not included          |
| Poland      | Pork            | Conventional | Poland                     | Generic - country | Nguyen et al., (2010)    | 3,00                   | kg feed/kg live weight         | Not included          |

| Country | Product | Category       | Certification              | Data type         | Source FCR              | Reference<br>FCR value | Reference FCR Unit        | Non-prod.<br>Animals? |
|---------|---------|----------------|----------------------------|-------------------|-------------------------|------------------------|---------------------------|-----------------------|
| Spain   | Pork    | Conventional   | Spain                      | Generic - country | Lamnatou et al., (2016) | 3,30                   | kg feed/kg carcass weight | Not included          |
| Sweden  | Pork    | Conventional   | Sweden                     | Specific          | Zira et al., (2021)     | 2,67                   | kg feed/kg live weight    | Included              |
| Sweden  | Pork    | Differentiated | Swedish climate certified  | Specific          | Zira et al., (2021)     | 2,67                   | kg feed/kg live weight    | Included              |
| Sweden  | Pork    | Differentiated | Swedish Sigill certified   | Specific          | Zira et al., (2021)     | 2,67                   | kg feed/kg live weight    | Included              |
| Sweden  | Pork    | Organic        | Sweden organic and<br>KRAV | Specific          | Zira et al., (2021)     | 3,38                   | kg feed/kg live weight    | Included              |

Notes:

• This table only includes products which were assessed in the complementary study. Organic products are not included either as their result is zero by definition.

• Values for cheese and butter are directly related to those of milk given that it is considered that 1kg cheese corresponds to 6,5 or 10L milk and 1kg butter corresponds to 20L milk.

## Feed composition

Table 18. Assumptions and calculation inputs regarding feed compositions for assessed products (continued on following pages).

| Product | Country | Category       | Certification                               | Source                               | Dry weight / Humid<br>weight | Forage<br>total | Cereals<br>total | Olea-<br>/proteaginous | Protein<br>rich total | Sugarbeet | Others<br>(vitamins,<br>minerals) |
|---------|---------|----------------|---------------------------------------------|--------------------------------------|------------------------------|-----------------|------------------|------------------------|-----------------------|-----------|-----------------------------------|
| Beef    | Finland | Conventional   | Finland                                     | WWF Finland, (2016)                  | Dry weight                   | 60%             | 40%              | 0%                     | 0%                    | 0%        | 0%                                |
|         | Germany | Conventional   | Germany                                     | Moberg et al., (2019)                | Dry weight                   | 56%             | 41%              | 1%                     | 1%                    | 0%        | 0%                                |
|         | Ireland | Conventional   | Ireland                                     | Moberg et al., (2019)                | Dry weight                   | 90%             | 8%               | 1%                     | 1%                    | 0%        | 0%                                |
|         | Poland  | Conventional   | Poland                                      | Moberg et al., (2019)                | Dry weight                   | 56%             | 41%              | 1%                     | 1%                    | 0%        | 0%                                |
|         | Sweden  | Conventional   | Sweden - animals<br>indoor                  | Moberg et al., (2019)                | Dry weight                   | 57%             | 41%              | 0%                     | 1%                    | 0%        | 0%                                |
|         | Sweden  | Conventional   | Sweden -animals on<br>(some) pasture        | Moberg et al., (2019)                | Dry weight                   | 60%             | 29%              | 2%                     | 6%                    | 2%        | 1%                                |
|         | Sweden  | Differentiated | Swedish certified Sigill<br>natural pasture | Moberg et al., (2019)                | Dry weight                   | 60%             | 29%              | 2%                     | 6%                    | 2%        | 1%                                |
|         | Sweden  | Differentiated | Swedish Sigill certified                    | Moberg et al., (2019)                | Dry weight                   | 60%             | 29%              | 2%                     | 6%                    | 2%        | 1%                                |
|         | Sweden  | Differentiated | Swedish Sigill<br>Klimatcertifierad         | Moberg et al., (2019)                | Dry weight                   | 60%             | 29%              | 2%                     | 6%                    | 2%        | 1%                                |
|         | USA     | Conventional   | USA                                         | Rotz et al., (2019)                  | Dry weight                   | 82%             | 17%              | 1%                     | 0%                    | 0%        | 0%                                |
| Broiler | Belgium | Conventional   | Belgium                                     | BE Feed company (2018)               | Humid weight                 | 0%              | 65%              | 7%                     | 20%                   | 0%        | 8%                                |
|         | Brazil  | Conventional   | Brazil                                      | Prudêncio da Silva et al.,<br>(2014) | Humid weight                 | 0%              | 57%              | 0%                     | 39%                   | 0%        | 4%                                |
|         | Denmark | Conventional   | Denmark                                     | Moberg et al., (2019)                | Humid weight                 | 0%              | 77%              | 3%                     | 16%                   | 0%        | 5%                                |
|         | France  | Conventional   | France                                      | Koch & Salou, (2020)                 | Humid weight                 | 0%              | 68%              | 3%                     | 26%                   | 0%        | 3%                                |
|         | France  | Differentiated | French Label Rouge                          | Koch & Salou, (2020)                 | Humid weight                 | 0%              | 76%              | 0%                     | 20%                   | 0%        | 3%                                |
|         | Germany | Conventional   | Germany                                     | van Grinsven et al.,<br>(2019)       | Dry weight                   | 0%              | 70%              | 2%                     | 24%                   | 0%        | 4%                                |

| Product | Country     | Category       | Certification                         | Source                                                    | Dry weight / Humid<br>weight | Forage<br>total | Cereals<br>total | Olea-<br>/proteaginous | Protein<br>rich total | Sugarbeet | Others<br>(vitamins,<br>minerals) |
|---------|-------------|----------------|---------------------------------------|-----------------------------------------------------------|------------------------------|-----------------|------------------|------------------------|-----------------------|-----------|-----------------------------------|
| Broiler | Netherlands | Conventional   | Netherlands                           | van Grinsven et al.,<br>(2019)                            | Dry weight                   | 0%              | 70%              | 2%                     | 24%                   | 0%        | 4%                                |
|         | Poland      | Conventional   | Poland                                | van Grinsven et al.,<br>(2019)                            | Dry weight                   | 0%              | 70%              | 2%                     | 24%                   | 0%        | 4%                                |
|         | Sweden      | Conventional   | Sweden                                | Moberg et al., (2019)                                     | Humid weight                 | 0%              | 77%              | 3%                     | 16%                   | 0%        | 5%                                |
|         | Sweden      | Differentiated | Swedish climate certified             | Moberg et al., (2019)                                     | Humid weight                 | 0%              | 77%              | 3%                     | 16%                   | 0%        | 5%                                |
|         | Sweden      | Differentiated | Swedish Sigill certified              | Moberg et al., (2019)                                     | Humid weight                 | 0%              | 77%              | 3%                     | 16%                   | 0%        | 5%                                |
|         | Sweden      | Organic        | EU organic                            | Moberg et al., (2019)                                     | Humid weight                 | 0%              | 77%              | 3%                     | 16%                   | 0%        | 5%                                |
|         | Sweden      | Organic        | KRAV                                  | Moberg et al., (2019)                                     | Humid weight                 | 0%              | 77%              | 3%                     | 16%                   | 0%        | 5%                                |
| Cheese  | Denmark     | Conventional   | Hard cheese (cow) -<br>Denmark        | Dalgaard et al., (2016)                                   | Humid weight                 | 87%             | 6%               | 0%                     | 6%                    | 1%        | 0%                                |
|         | Denmark     | Conventional   | White salad cheese<br>(cow) - Denmark | Dalgaard et al., (2016)                                   | Humid weight                 | 87%             | 6%               | 0%                     | 6%                    | 1%        | 0%                                |
|         | France      | Conventional   | Chevre (goat) - France                | IDELE (2015)                                              | Dry weight                   | 68%             | 26%              | 0%                     | 2%                    | 2%        | 2%                                |
|         | Germany     | Conventional   | Hard cheese (cow) -<br>Germany        | Dalgaard et al., (2016)                                   | Humid weight                 | 88%             | 5%               | 1%                     | 6%                    | 1%        | 0%                                |
|         | Germany     | Conventional   | White salad cheese<br>(cow) - Germany | Dalgaard et al., (2016)                                   | Humid weight                 | 88%             | 5%               | 1%                     | 6%                    | 1%        | 0%                                |
|         | Italy       | Conventional   | Mozzarella (cow) - Italy              | Palmieri et al., (2017)                                   | Dry weight                   | 52%             | 24%              | 4%                     | 8%                    | 12%       | 0%                                |
|         | Netherlands | Conventional   | Hard cheese (cow) -<br>Netherlands    | van Grinsven et al.,<br>(2019; Thomassen et al.,<br>2008) | Dry weight                   | 77%             | 12%              | 5%                     | 3%                    | 4%        | 0%                                |
| Cheese  | Sweden      | Conventional   | "Halloumi" (Cow) -<br>Sweden          | Moberg et al., (2019)                                     | Dry weight                   | 56%             | 31%              | 3%                     | 7%                    | 2%        | 1%                                |

| Product     | Country     | Category       | Certification                                       | Source                                                              | Dry weight / Humid<br>weight | Forage<br>total | Cereals<br>total | Olea-<br>/proteaginous | Protein<br>rich total | Sugarbeet | Others<br>(vitamins,<br>minerals) |
|-------------|-------------|----------------|-----------------------------------------------------|---------------------------------------------------------------------|------------------------------|-----------------|------------------|------------------------|-----------------------|-----------|-----------------------------------|
|             | Sweden      | Conventional   | Hard cheese (cow) -<br>Sweden                       | Moberg et al., (2019)                                               | Dry weight                   | 56%             | 31%              | 3%                     | 7%                    | 2%        | 1%                                |
|             | Sweden      | Differentiated | Hard cheese (cow) -<br>Swedish climate<br>certified | Moberg et al., (2019)                                               | Dry weight                   | 56%             | 31%              | 3%                     | 7%                    | 2%        | 1%                                |
|             | Sweden      | Differentiated | Hard cheese (cow) -<br>Swedish Sigill certified     | Moberg et al., (2019)                                               | Dry weight                   | 56%             | 31%              | 3%                     | 7%                    | 2%        | 1%                                |
| Eggs        | Denmark     | Conventional   | Denmark                                             | Moberg et al., (2019)                                               | Humid weight                 | 0%              | 65%              | 10%                    | 16%                   | 0%        | 9%                                |
|             | Finland     | Conventional   | Finland                                             | WWF (2016) FI Meat<br>Guide                                         | Humid weight                 | 0%              | 75%              | 0%                     | 15%                   | 0%        | 10%                               |
|             | Netherlands | Conventional   | Netherlands                                         | Dekker et al. (2011)                                                | Humid weight                 | 0%              | 64%              | 0%                     | 24%                   | 0%        | 12%                               |
|             | Poland      | Conventional   | Poland                                              | Damaziak et al. (2017)                                              | Dry weight                   | 0%              | 63%              | 1%                     | 27%                   | 0%        | 8%                                |
|             | Sweden      | Conventional   | Sweden                                              | Moberg et al., (2019)                                               | Humid weight                 | 0%              | 65%              | 10%                    | 16%                   | 0%        | 9%                                |
|             | Sweden      | Organic        | EU organic                                          | Moberg et al., (2019)                                               | Humid weight                 | 0%              | 65%              | 10%                    | 16%                   | 0%        | 9%                                |
|             | Sweden      | Organic        | KRAV                                                | Moberg et al., (2019)                                               | Humid weight                 | 0%              | 65%              | 10%                    | 16%                   | 0%        | 9%                                |
| Lamb        | Sweden      | Conventional   | Sweden                                              | Adapted from Wallman<br>et al. (2011); grazed<br>grass not included | Dry weight                   | 72%             | 17%              | 2%                     | 4%                    | 4%        | 0%                                |
| Plant-based | General     | Conventional   | Legumes conventional                                | WWF (2018) AT Meat<br>Guide                                         | Humid weight                 | 0%              | 0%               | 100%                   | 0%                    | 0%        | 0%                                |
|             | General     | Conventional   | Quorn                                               | Quorn communication<br>(2017)                                       | Humid weight                 | 0%              | 100%             | 0%                     | 0%                    | 0%        | 0%                                |
|             | General     | Conventional   | Seitan                                              | WWF (2018) AT Meat<br>Guide                                         | Humid weight                 | 0%              | 100%             | 0%                     | 0%                    | 0%        | 0%                                |
|             | General     | Conventional   | Tofu/Tempeh (soy)                                   | WWF (2018) AT Meat<br>Guide                                         | Humid weight                 | 0%              | 0%               | 0%                     | 100%                  | 0%        | 0%                                |

| Product | Country     | Category       | Certification             | Source                        | Dry weight / Humid<br>weight | Forage<br>total | Cereals<br>total | Olea-<br>/proteaginous | Protein<br>rich total | Sugarbeet | Others<br>(vitamins,<br>minerals) |
|---------|-------------|----------------|---------------------------|-------------------------------|------------------------------|-----------------|------------------|------------------------|-----------------------|-----------|-----------------------------------|
| Pork    | Denmark     | Conventional   | Denmark                   | Moberg et al., (2019)         | Humid weight                 | 0%              | 94%              | 2%                     | 3%                    | 0%        | 1%                                |
|         | Finland     | Conventional   | Finland                   | WWF (2016) FI Meat<br>Guide   | Humid weight                 | 0%              | 80%              | 0%                     | 20%                   | 0%        | 0%                                |
|         | Germany     | Conventional   | Germany                   | Moberg et al. (2019)          | Humid weight                 | 0%              | 94%              | 2%                     | 3%                    | 0%        | 1%                                |
|         | Italy       | Conventional   | Italy                     | BE Feed company (2018)        | Humid weight                 | 0%              | 65%              | 12%                    | 13%                   | 0%        | 10%                               |
|         | Netherlands | Conventional   | Netherlands               | Rougher et al. (2015)         | Dry weight                   | 0%              | 28%              | 11%                    | 35%                   | 26%       | 0%                                |
|         | Poland      | Conventional   | Poland                    | van Grinsven et al.<br>(2019) | Dry weight                   | 0%              | 84%              | 0%                     | 12%                   | 0%        | 4%                                |
|         | Spain       | Conventional   | Spain                     | Lamnatou et al. (2016)        | Humid weight                 | 0%              | 80%              | 2%                     | 14%                   | 0%        | 3%                                |
|         | Sweden      | Conventional   | Sweden                    | Zira et al., (2021)           | Humid weight                 | 0%              | 90%              | 0%                     | 10%                   | 0%        | 0%                                |
|         | Sweden      | Differentiated | Swedish climate certified | Zira et al., (2021)           | Humid weight                 | 0%              | 90%              | 0%                     | 10%                   | 0%        | 0%                                |
|         | Sweden      | Differentiated | Swedish Sigill certified  | Zira et al., (2021)           | Humid weight                 | 0%              | 90%              | 0%                     | 10%                   | 0%        | 0%                                |
|         | Sweden      | Organic        | EU organic                | Zira et al., (2021)           | Humid weight                 | 0%              | 87%              | 6%                     | 7%                    | 0%        | 0%                                |
|         | Sweden      | Organic        | KRAV                      | Zira et al., (2021)           | Humid weight                 | 0%              | 87%              | 6%                     | 7%                    | 0%        | 0%                                |

Notes: Only the main categories of ingredients (forage, cereals, olea-/proteaginous, protein rich feed, sugarbeet and others) are presented in the table. Each of these categories is made up of different ingredients as described in point 3.5.3.

## Slaughter and carcass yields

Table 19. Slaughter and carcass yields per country of origin for different meat products

| Product | Country  | Category | Source                                        | Slaughter yield (kg<br>carcass/kg live<br>weight) | Carcass yield (kg<br>edible meat/kg<br>carcass) | TOTALLosses(kgediblemeat/kgliveweight) |
|---------|----------|----------|-----------------------------------------------|---------------------------------------------------|-------------------------------------------------|----------------------------------------|
| Beef    | Austria  | All      | Ertl et al., (2016)                           | 67%                                               | 76%                                             | 51%                                    |
|         | Belgium  | All      | ERM & UGent, (2011)                           | 67%                                               | 81%                                             | 54%                                    |
|         | Estonia* | All      | Clune et al., (2017); Mogensen et al., (2015) | 50%                                               | 70%                                             | 35%                                    |
|         | Finland* | All      | Clune et al., (2017); Mogensen et al., (2015) | 50%                                               | 70%                                             | 35%                                    |
|         | France   | All      | IDELE & CNE, (2019)                           | 54%                                               | 68%                                             | 37%                                    |
|         | Germany  | All      | Clune et al., (2017); Xue et al., (2019)      | -                                                 | 70%                                             | 38%                                    |
|         | Ireland  | All      | Moberg et al. (2019) ; Clune et al. (2017)    | -                                                 | 70%                                             | 49%                                    |
|         | Poland   | All      | Moberg et al. (2019) ; Clune et al. (2017)    | -                                                 | 70%                                             | 49%                                    |
|         | Sweden   | All      | Clune et al., (2017); Mogensen et al., (2015) | 50%                                               | 70%                                             | 35%                                    |
|         | USA      | All      | Loveday & Ferguson, (n.d.)                    | 63%                                               | 66%                                             | 42%                                    |
| Broiler | Austria  | All      | Ertl et al., (2016)                           | 72%                                               | 68%                                             | 49%                                    |
|         | Belgium  | All      | Riera et al. (2019)                           | 72%                                               | 72%                                             | 52%                                    |
|         | Brazil   | All      | Prudêncio da Silva et al., (2014)             | 75%                                               | 77%                                             | 57%                                    |
|         | Denmark  | All      | Moberg et al. (2019) ; Clune et al. (2017)    | -                                                 | 77%                                             | 54%                                    |
|         | Estonia  | All      | Sytra (2018)                                  | 72%                                               | 72%                                             | 52%                                    |
|         | Finland* | All      | WWF Finland, (2016)                           | 72%                                               | 80%                                             | 58%                                    |
|         | France   | All      | Sytra (2018)                                  | 72%                                               | 72%                                             | 52%                                    |
|         | Germany  | All      | Xue et al. (2019)                             | -                                                 | -                                               | 58%                                    |

|      | Netherlands* | All | Sytra (2018)                                              | 72% | 72% | 52% |
|------|--------------|-----|-----------------------------------------------------------|-----|-----|-----|
|      | Poland       | All | Clune et al. (2017)                                       |     |     | 54% |
|      | Sweden       | All | Cederberg et al., (2009)                                  | 70% | 72% | 50% |
| Lamb | Sweden       | All | Moberg et al. (2019) ; Clune et al. (2017)                | -   | 66% | 43% |
| Pork | Austria      | All | Winkler et al., (2016)                                    | 78% | 80% | 62% |
|      | Belgium      | All | ERM & UGent, (2011)                                       | 79% | 80% | 63% |
|      | Denmark      | All | Moberg et al. (2019) ; Clune et al. (2017)                | -   | 59% | 43% |
|      | Estonia*     | All | ERM & UGent, (2011)                                       | 79% | 80% | 63% |
|      | Finland*     | All | ERM & UGent, (2011)                                       | 79% | 80% | 63% |
|      | France       | All | Chambres d'Agriculture, (2013)                            | 79% | 81% | 64% |
|      | Germany*     | All | Xue et al. (2019)                                         | -   | 80% | 62% |
|      | Italy*       | All | Malagutti et al. (2012), Chambres d'agriculture<br>(2013) | 83% | 81% | 67% |
|      | Netherlands* | All | ERM & UGent, (2011); Rougher et al., (2015)               | 81% | 80% | 65% |
|      | Poland*      | All | Xue et al., (2019)                                        | -   | 80% | 62% |
|      | Spain*       | All | Lamnatou et al. (2016), Chambres d'agriculture<br>(2013)  | 79% | 81% | 64% |
|      | Sweden       | All | Zira et al., (2021)                                       | 59% | 59% | 35% |

Note: No specific data was found for some products (with an \*). Hence the values of another country were used (see matching references to identify the countries used as proxies). It must also be noted that Clune et al., (2017) uses the same yields for different countries.

### Pesticides uses of feed ingredients

Table 20. Main feed ingredients included in the model and corresponding crop references in each country of interest (continued on following pages).

| Countries | Grazed<br>grass            | Grass<br>silage/ha<br>y                  | Maize<br>silage | Other<br>forage                                         | Cereals -<br>Wheat                  | Cereals -<br>Maize                        | Cereal<br>s -<br>Barley | Olea-<br>/proteagino<br>us                         | Soybea<br>n meal<br>– BR | Soybean<br>meal -<br>other | Sunflowe<br>r meal | Rapeseed meal                        | Sugarbeet                      |
|-----------|----------------------------|------------------------------------------|-----------------|---------------------------------------------------------|-------------------------------------|-------------------------------------------|-------------------------|----------------------------------------------------|--------------------------|----------------------------|--------------------|--------------------------------------|--------------------------------|
| Sweden    | Average                    | Tempora<br>ry grasses<br>and<br>grazings | Green<br>maize  | Plants<br>harveste<br>d green<br>from<br>arable<br>land | Common<br>wheat and<br>spelt        | Average                                   | Barley                  | Broad and<br>field beans                           | Soya<br>BR               | Soya<br>USA                | Average            | Rape and turnip<br>rape seeds        | Sugar beet<br>(excluding seed) |
| France    | Permane<br>nt<br>grassland | Tempora<br>ry grasses<br>and<br>grazings | Green<br>maize  | Average                                                 | Common<br>wheat and<br>spelt        | Grain<br>maize<br>and<br>corn-<br>cob-mix | Barley                  | Broad and<br>field beans                           | Soya<br>BR               | Soya<br>USA                | Sunflower<br>seed  | Rape and turnip<br>rape seeds        | Sugar beet<br>(excluding seed) |
| Belgium   | Permane<br>nt<br>grassland | Tempora<br>ry grasses<br>and<br>grazings | Green<br>maize  | Average                                                 | Wheat and spelt                     | Grain<br>maize<br>and<br>corn-<br>cob-mix | Barley                  | Average                                            | Soya<br>BR               | Soya<br>USA                | Average            | Rape and turnip<br>rape seeds        | Sugar beet<br>(excluding seed) |
| Brazil    | -                          | -                                        | -               | -                                                       | -                                   | Maize                                     | -                       | -                                                  | Soya<br>BR               | Soya<br>USA                | -                  | -                                    | -                              |
| Cyprus    | Average                    | Lucerne                                  | Average         | Average                                                 | Common<br>wheat and<br>spelt        | Average                                   | Barley                  | Other dry<br>pulses and<br>protein crops<br>n.e.c. | Soya<br>BR               | Soya<br>USA                | Average            | Average                              | Average                        |
| Denmark   | Estonia                    | Average                                  | Green<br>maize  | Sweden                                                  | Common<br>winter wheat<br>and spelt | Average                                   | Spring<br>barley        | Average                                            | Soya<br>BR               | Soya<br>USA                | Average            | Winter rape and<br>turnip rape seeds | Estonia                        |
| Germany   | Belgium                    | Average                                  | Green<br>maize  | Average                                                 | Common<br>winter wheat<br>and spelt | Average                                   | Winte<br>r<br>barley    | Average                                            | Soya<br>BR               | Soya<br>USA                | Average            | Winter rape and<br>turnip rape seeds | Sugar beet<br>(excluding seed) |

| Greece          | Average                                                 | Average                                                 | Average        | Average                                                       | Average                             | Average                                   | Averag<br>e      | Average                  | Soya<br>BR  | Soya<br>USA | Average                                                    | Average                              | Average                        |
|-----------------|---------------------------------------------------------|---------------------------------------------------------|----------------|---------------------------------------------------------------|-------------------------------------|-------------------------------------------|------------------|--------------------------|-------------|-------------|------------------------------------------------------------|--------------------------------------|--------------------------------|
| Ireland         | Permane<br>nt<br>grassland                              | Average                                                 | Green<br>maize | Plants<br>harveste<br>d green<br>from<br>arable<br>land       | Common<br>winter wheat<br>and spelt | Average                                   | Barley           | Broad and<br>field beans | Soya<br>BR  | Soya<br>USA | Rape,<br>turnip<br>rape,<br>sunflower<br>seeds and<br>soya | Winter rape and<br>turnip rape seeds | Average                        |
| Italy           | France                                                  | Average                                                 | Average        | Average                                                       | Durum<br>wheat                      | Grain<br>maize<br>and<br>corn-<br>cob-mix | Averag<br>e      | Average                  | Soya<br>BR  | Soya<br>USA | Average                                                    | Average                              | Average                        |
| Netherland<br>s | Belgium                                                 | Average                                                 | Green<br>maize | Average                                                       | Common<br>winter wheat<br>and spelt | Average                                   | Spring<br>barley | Average                  | Soya<br>BR  | Soya<br>USA | Average                                                    | Rape and turnip<br>rape seeds        | Sugar beet<br>(excluding seed) |
| Poland          | Average                                                 | Average                                                 | German<br>y    | Average                                                       | Common<br>winter wheat<br>and spelt | Grain<br>maize<br>and<br>corn-<br>cob-mix | Spring<br>barley | Average                  | Soya<br>BR  | Soya<br>USA | Average                                                    | Winter rape and<br>turnip rape seeds | Sugar beet<br>(excluding seed) |
| Spain           | Average                                                 | Average                                                 | Average        | Average                                                       | Average                             | Average                                   | Averag<br>e      | Average                  | Soya<br>BR  | Soya<br>USA | Average                                                    | Average                              | Average                        |
| USA             | All forage<br>(pasture,<br>alfalfa and<br>other<br>hay) | All forage<br>(pasture,<br>alfalfa<br>and other<br>hay) |                | All<br>forage<br>(pasture,<br>alfalfa<br>and<br>other<br>hay) | Wheat                               | Corn for<br>grain                         | Wheat            | Soybean                  | Soya<br>BR  | Soya<br>USA |                                                            |                                      |                                |
| General -<br>EU | Average                                                 | Average                                                 | Average        | Average                                                       | Average                             | Average                                   | Averag<br>e      | Average                  | Averag<br>e | Soya<br>USA | Average                                                    | Average                              | Average                        |

Notes:

- For some crops, no data was available. As a result, the cell indicates whether the value of a neighbouring country or the average value (based on the available countries) was used in the calculations;
- For some crops (wheat; barley; rape and turnip), Eurostat provides more than one crop reference, for which the availability of data can vary from country to country. The reference crop was thus adapted accordingly;
- There are two columns for the soybean meal. This allows to take into account the different origins of the soybean in the ration;
- Vitamins and minerals, which are included in the list of potential feed ingredients, are not included in this table as they were assumed not to be associated with any use of pesticides.